
11 February, 2002 1

06-06798 Distributed Systems

Lecture 10:
Clocks and Time

11 February, 2002 2

Overview
• Time service

– requirements and problems

– sources of time

• Clock synchronisation algorithms
– clock skew & drift

– Cristian algorithm

– Berkeley algorithm

– Network Time Protocol

• Logical clocks
– Lamport’s timestamps

11 February, 2002 3

Time service
• Why needed?

– to measure delays between distributed components

– to synchronise streams, e.g. sound and video

– to establish event ordering
• causal ordering (did A happen before B?)

• concurrent/overlapping execution (no causal relationship)

– for accurate timestamps to identify/authenticate
• business transactions

• serializability in distributed databases

• security protocols

11 February, 2002 4

Clocks
• Internal hardware clock

– built-in electronic device

– counts oscillations occurring in a quartz crystal at a
definite frequency

– store the result in a counter register

– interrupt generated at regular intervals

– interrupt handler reads the counter register, scales it to
convert to time units (seconds, nanoseconds) and
updates software clock

• e.g. seconds elapsed since 1/01/1970

11 February, 2002 5

Problems with internal clocks
• Frequency of oscillations

– varies with temperature

– different rate on different computers

10:05:17 10:05:14 10:05:15

• Accuracy
– typically 1 sec in 11.6 days

• Centralised time service?
– impractical due to variable message delays

11 February, 2002 6

Clock skew and drift

• Clock skew
– difference between the readings of two clocks

• Clock drift
– difference in reading between a clock and a nominal

perfect reference clock per unit of time of the reference
clock

• typically 10-6 seconds/second = 1 sec in 11.6 days

1HWZRUN

11 February, 2002 7

Sources of time
• Universal Coordinated Time (UTC, from French)

– based on atomic time but leap seconds inserted to keep
in phase with astronomical time (Earth’s orbit)

– UTC signals broadcast every second from radio and
satellite stations

• land station accuracy 0.1-10ms due to atmospheric conditions

• Global Positioning System (GPS)
– broadcasts UTC

• Receivers for UTC and GPS
– available commercially

– used to synchronise local clocks

11 February, 2002 8

Clock synchronisation

• External: synchronise with authoritative source of
time
– the absolute value of difference between the clock and

the source is bounded above by D at every point in the
synchronisation interval

– time accurate to within D

• Internal: synchronise clocks with each other
– the absolute value of difference between the clocks is

bounded above by D at every point in the
synchronisation interval

– clocks agree to within D (not necessarily accurate time)

11 February, 2002 9

Clock compensation
• Assume 2 clocks can each drift at rate R msecs/sec

– maximum difference 2R msecs/sec

– must resynchronise every D/2R to agree within D

• Clock correction
– get UTC and correct software clock

• Problems!
– what happens if local clock is 5 secs fast and it is set right?

– timestamped versions of files get confused

– time must never run backwards!

– better to scale the value of internal clock in software
without changing the clock rate

11 February, 2002 10

Synchronisation methods

• Synchronous systems
– simpler, relies on known time bounds on system actions

• Asynchronous systems
– intranets

• Cristian’s algorithm

• Berkeley algorithm

– Internet
• The Network Time Protocol

11 February, 2002 11

Synchronous systems case

• Internal synchronisation between two processes
– know bounds MIN, MAX on message delay

– also on clock drift, execution rate

• Assume One sends message to Two with time t
– Two can set its clock to t + (MAX+MIN)/2 (estimate of

time taken to send message)

– then the skew is at most (MAX-MIN)/2

– why not t + MIN or t + MAX?
• maximum skew is larger, could be MAX-MIN

11 February, 2002 12

Cristian’s algorithm

• Estimate message propagation time by p=(T1-T0-h)/2 (=half of
round-trip of request-reply)

• Set clock to UTC+p

• Make multiple requests, at spaced out intervals, measure T1-T0

– but discard any that are over a threshold (could be congestion)

– or take minimum values as the most accurate

Time Server with
UTC receiver gives

accurate current
time

Client Time server

h = interrupt
 handler time

T0 Request

T1
UTC Time

11 February, 2002 13

Cristian’s algorithm
• Probabilistic behaviour

– achieves synchronisation only if round-trip short
compared to required accuracy

– high accuracy only for message transmission time close
to minimum

• Problems
– single point of failure and bottleneck

– could multicast to a group of servers, each with UTC

– an impostor or faulty server can wreak havoc
• use authentication

• agreement protocol for N > 3f clocks, f number of faulty clocks

11 February, 2002 14

The Berkeley algorithm
• Choose master co-ordinator which periodically polls slaves

• Master estimates slaves’ local time based on round-trip

• Calculates average time of all, ignoring readings with
exceptionally large propagation delay or clocks out of synch

• Sends message to each slave indicating clock adjustment

2:59:50 3:00:25

2:59:51 3:00:26

2:59:52 3:00:27

3:00:00 3:00:01 3:00:02

Synchronisation
feasible to within
20-25 msec for 15
computers, with
drift rate of 2 x 10-5

and max round trip
propagation time
of 10 msec.

3:00:00

3:00:00 3:00:00

Query

0

-10 +25

Response

+5

+15 -20

Adjust

11 February, 2002 15

The Berkeley algorithm

• Accuracy
– depends on the round-trip time

• Fault-tolerant average:
– eliminates readings of faulty clocks - probabilistically

– average over the subset of clocks that differ by up to a
specified amount

• What if master fails?
– elect another leader

11 February, 2002 16

Network Time Protocol (NTP)
• Multiple time servers across the Internet

• Primary servers: directly connected to UTC receivers

• Secondary servers: synchronise with primaries

• Tertiary servers: synchronise with secondary, etc

• Scales up to large numbers of servers and clients

1

 33 3

2 2

= active synchronisation

= backup synchronisation
(exchange timing
information, but do not
use it to synchronise
clocks)

Copes with failures of servers
– e.g. if primary’s UTC source
fails it becomes a secondary,
or if a secondary cannot reach
a primary it finds another one.

Authentication used to check
that time comes from trusted
sources

11 February, 2002 17

NTP Synchronisation Modes
• Multicast

– one or more servers periodically multicast to other servers
on high speed LAN

– they set clocks assuming small delay

• Procedure Call Mode
– similar to Cristian’s algorithm: client requests time from a

few other servers

– used for higher accuracy or where no multicast

• Symmetric protocol
– used by master servers on LANs and layers closest to

primaries

– highest accuracy, based on pairwise synchronisation

11 February, 2002 18

NTP Symmetric Protocol

• t = transmission delay (e.g. 5ms)

• o = clock offset of B relative to A (e.g. 3ms)

• Record local times T1 = 10, T2 = 18, T3 = 20, T4 = 22

Let a = T2-T1= t + o, b = T4-T3 = t’ - o, and assume t ≈ t’

Round trip delay = t + t’ = a + b = (T2-T1)+(T4-T3) = 10

Calculate estimate of clock offset o = (a-b)/2 = 3

Server B T2 T3

Server A T1 T4

t+o t’-o
10

18 20

22

11 February, 2002 19

NTP Symmetric Protocol

• T4 = current message receive time determined at receiver

• Every message contains
– T3 = current message send time

– T2 = previous receive message receive time

– T1 = previous receive message send time

• Data filtering (obtain average values of clock offset from values
of o corresponding to minimum t)

• Peer selection (exchange messages with several peers favouring
those closer to primaries)

• How good is it? 20-30 primaries and 2000 secondaries can
synchronise to within 30 ms

11 February, 2002 20

Logical time

• For many purposes it is sufficient to agree on the
same time (e.g. internal consistency) which need not
be UTC time

• Can deduce causal event ordering

a → b (a occurs before b)

• Logical time denotes causal relationships

• but the → relationship may not reflect real causality,
only accidental

11 February, 2002 21

Event ordering

Define a → b (a occurs before b) if
– a and b are events in the same process and a occurs before

b, or

– a is the event of message sent from process A and B is the
event of message receipt by process B

If a → b and b → c then a → c.

→ is partial order.

For events such that neither a → b nor b → a we say
a, b are concurrent, denoted a || b.

11 February, 2002 22

Example of causal ordering

• a → b, c → d

• b → c, d → f

• a || e

S�

S�

S�

D E

F G

H I

P�

P�

3K\VLFDO

WLPH

11 February, 2002 23

Logical clocks [Lamport]
• Logical clock = monotonically increasing software

counter (not real time!)
– one for each process P, used for timestamping

• How it works
– LP incremented before assigning a timestamp to an event

– when P sends message m, P timestamps it with current value
t of LP (after incrementing it), piggybacking t with m

– on receiving message (m,t), Q sets its own clock LQ to
maximum of LQ and t, then increments LQ before
timestamping the message receive event

• Note a → b implies T(a) < T(b)

What What
about about

converse?converse?

11 February, 2002 24

Totally ordered logical clocks

• Problem: T(a) = T(e), and yet a, e distinct.

• Create total order by taking account of process ids.

• Then (T(a),pid) < (T(b),qid) iff T(a) < T(b) or
T(a)=T(b) and pid < qid.

D E

F G

H I

P�

P�

��

� �

��

S�

S�

S�

3K\VLFDO�
WLPH

11 February, 2002 25

Vector clocks
• Totally ordered logical clocks

– arbitrary event order, depends on order of process ids

– i.e. (T(a),pid) < (T(b),qid) does not imply a → b, see a, e

• Vector clocks
– array of N logical clocks in each process, if N processes

– vector timestamps piggybacked on the messages

– rules for incrementing similar to Lamport’s, except
• processes own component in array modified

• componentwise maximum and comparison

• Problems
– storage requirements

11 February, 2002 26

Vector timestamps

• VT(b) < VT(c), hence b → c

• neither VT(b) < VT(e), nor VT(b) < VT(e), hence b || e

D E

F G

H I

P�

P�

��������������

������� �������

��������������

S�

S�

S�

3K\VLFDO�
WLPH

11 February, 2002 27

Summary
• Local clocks

– drift!

– but needed for timestamping

• Synchronisation algorithms
– must handle variable message delays

• Clock compensation estimate average delays
– adjust clocks

– can deal with faulty clocks

• Logical clocks
– sufficient for causal ordering

