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Overview

e Time service
— requirements and problems
— sources of time

e Clock synchronisation algorithms
— clock skew & drift
— Cristian algorithm
— Berkeley algorithm
— Network Time Protocol
e Logical clocks
— Lamport’s timestamps
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Time service

 Why needed?

— to measureelaysbetween distributed components
— tosynchronise streame.g. sound and video

— to establiskevent ordering
 causal orderingdid A happen before B?)
e concurrent/overlapping executi@no causal relationship)
— for accuratéimestampgo identify/authenticate
* business transactions :

 serializability in distributed databases
* security protocols
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Clocks

e |Internal hardware clock
— built-in electronic device

— countsoscillationsoccurring in a quartz crystal at a
definite frequency

— store the result in @unter register
— Interruptgenerated at regular intervals

— Interrupt handler reads the counter register, scales it to
convert to time units (seconds, nanoseconds) and
updatessoftware clock

e e.g. seconds elapsed since 1/01/1970
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Problems with internal clocks

* Fregquency of oscillations
— varies withtemperature
— differentrateon different computers

e a

10:05:17 10:05:14 10:05:15

S I [ —

e Accuracy
— typically 1 sec in 11.6 days

e Centralisedime service?
— Impractical due toariable message delays
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Clock skew and drift

sHcHIcHc

Network

Clock skew
— differencebetween the readings of two clocks

e Clock drift

— difference in reading between a clock and a nominal
perfect reference clogker unit of time of the reference
clock

o typically 10° seconds/second = 1 sec in 11.6 days
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Sources of time

e Universal Coordinated Time (UTC, from French)

— based omtomictime but leap seconds inserted to keep
In phase with astronomical time (Earth’s orbit)

— UTC signals broadcast every second frawioand
satellitestations
 land station accuracy 0.1-10ms due to atmospheric conditions

* Global Positioning System (GPS)
— broadcasts UTC

e Recelivers for UTC and GPS

— available commercially
— used to synchronise local clocks
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Clock synchronisation

External:synchronise with authoritative source of
time
— the absolute value of differenbetween the clock and

the sourcas bounded abovbky D atevery pointin the
synchronisation interval

— timeaccuratdgo within D

Internal:synchronise clocks with each other

— the absolute value of differenbetween the clockis
bounded above by D at every point in the
synchronisation interval

— clocksagreeto within D (not necessarily accurate time)
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Clock compensation

e Assume 2 clocks can each drift at rate R msecs/sec
— maximum difference 2R msecs/sec
— mustresynchronisevery D/2R to agree within D

e Clock correction
— get UTC and correct software clock

 Problems!
— what happens if local clock is 5 secs fast and it is set right?
— timestamped versions of files get confused
— time musteverrun backwards!

— better toscalethe value of internal clock in software

without changing the clock rate
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Synchronisation methods

e Synchronous systems
— simpler, relies on known time bounds on system actions

e Asynchronous systems

— Intranets
» Cristian’s algorithm
» Berkeley algorithm

— Internet
» The Network Time Protocol
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Synchronous systems case

 Internal synchronisatiobetween two processes
— knowboundsMIN, MAX on message delay
— also on clock drift, execution rate

e Assume One sends message to Two with time

— Two can set its clock to t f(MAX+MIN)/2 (estimate of
time taken to send message)

— then the skew is at most (MAX-MIN)/2

— why not t + MIN or t + MAX?
 maximum skew is larger, could be MAX-MIN
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Cristian’s algorithm

Client Time server _ _
- - t Time Server with
0 ,~ eques . .
. UTC receiver gives
‘ h =interrupt |— accurate current
T, € handler time time
UTC Time

Estimatemessage propagatisime byp=(T,-T,-h)/2 (=half of
round-tripof request-reply)

Set clock to UTG@p

Make multiple requestsat spaced out intervalsieasurel -T,,
— but discard any that are over a threshold (could be congestion)
— or take minimum values as the most accurate
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Cristian’s algorithm

 Probabilistic behaviour

— achieves synchronisation only if round-trip short
compared to required accuracy

— high accuracy only for message transmission time close
to minimum
 Problems
— single point ofailure andbottleneck
— could multicast to groupof servers, each with UTC

— animpostoror faulty server can wreak havoc
e use authentication
» agreement protocol for N > 3f clocks, f number of faulty clocks
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The Berkeley algorithm

« Choosamnasterco-ordinator which periodicallgolls slaves
« Master estimates slaves’ local time based on round-trip

o Calculatesaveragdime ofall, ignoring readings with
exceptionally large propagation delay or clocks out of synch

e Sends message to each slave indicating clidgkstment

v/\ 3:00:00

ey

s

3:00:00 3:00:01 3:00:02
3:00:00/ \43:00:00 -10 +25 +15/ \-20
2:59:50 3:00:25 2:59:51 3:00:26 2:59:52 3:00:27

Query Response Adjust

\
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Synchronisation
feasible to within
20-25 msec for 15
computers, with
drift rate of 2 x 16
and max round trip
propagation time
of 10 msec.
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The Berkeley algorithm

e Accuracy
— depends on the round-trip time

« Fault-tolerant average
— eliminates readings of faulty clockgrobabilistically

— average over theubsef clocks that differ byip toa
specified amount

 \What if master fails?
— elect another leader
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Network Time Protocol (NTP)

e Multiple time servers across the Internet

* Primaryservers: directly connected to UTC receivers
e Secondanservers: synchronise with primaries

e Tertiary servers: synchronise with secondary, etc

e Scales up to large numbers of servers and clients

s B\ e
= = active synchronisation Copes withfailuresof servers

: _ back hronisation| e.g. if primary’s UTC source
— = backup synchronisalion| ¢4 it hecomes a secondary,

(exchange timing :
. . or if a secondary cannot reach
2 2 information, but do not

use it to synchronise a primary it finds another one.
clocks)

3 3 3 Authenticationused to check
that time comes from trusted

N /
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NTP Synchronisation Modes

e Multicast

— one or moreservers periodically multicast to other servers
onhigh speed AN

— they set clocks assuming small delay

e Procedure Call Mode

— similar to Cristian’s algorithm: clieméguests timérom a
few other servers

— used for higher accuracy or where no multicast

e Symmetric protocol

— used bymasterservers on LANs and layet®sestto
primaries

— highestaccuracy based on pairwise synchronisation
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NTP Symmetric Protocol

Server B T2 T3
P N\
<«—t+0—> «—t'-0>»
Server A T1 T4
g J

e t=transmission delay (e.g. 5ms)

* 0 = clock offset of B relative to A (e.g. 3ms)

 Record localtimes T1=10,T2 =18, T3 =20, T4 =22
Leta=T2-Tl=t+0, b=T4-T3 =1 -0, and assumd’t
Round tripdelaEt+t =a+ b= (T2-T1)+(T4-T3) = 10
Calculate estimate afock offseto = (a-b)/2 = 3
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NTP Symmetric Protocol

T4 = current message receive tineermined at receiver

Every message contains

— T3 = current messagendtime

— T2 =previousreceive messageceivetime

— T1 =previousreceive messagendtime

Data filtering(obtainaverage values of clock offset from values
of o corresponding tominimumt)

Peer selectiofexchange messages with several peers favouring
those closer to primaries)

How good is it?20-30 primaries and 2000 secondaries can
synchronise to within 30 ms
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Logical time

For many purposes it is sufficientdgreeon the
same time (e.g. internal consistency) which need not
be UTC time

Can deduceausal event ordering
a —» b (a occurs before b)
Logical time denotes causal relationships

but the - relationship may not reflectal causality,
only accidental
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Event ordering

Definea —» b (a occurs before b) if

— a and b are events in the same process and a occurs before
b, or

— a s the event of message sent from process A and B is the
event of message receipt by process B

If a - b and b- c then a- c.
- Is partial order.

For events such thatithera - b nor b— a we say
a, b areconcurrentdenoted a || b.
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P4

P2

P3

Example of causal ordering

@ >
a b m;
° » Physical
C (\ time
® ° >
e f
° A - b, c-d
e b C, d- f
e alle
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Logical clocks [Lamport]

* Logical clock= monotonicallyincreasing software
counter (1ot real time!)

— one for each process P, usediforestamping

 How it works
— L, incrementedefore assigning a timestamp to an event

— when P sends message m, P timestamps it with current value
t of L (after incrementing it)piggybackingt with m

— on receiving message (m,t), Q sets its own clagto
maximumof Lo and t, then increments,lbefore
timestamping the message receive event

« Notea - bimplies T(a) < T(b
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oF

P2

P3

Totally ordered logical clocks

1 2

@ >
] t\

2 4 > Physical

time
C d
ms
1 5
.

@ ®
f

e
 Problem: T(a) = T(e), and yet a, e distinct.
o Createtotal order by taking account of process ids.

 Then (T(a),pid) < (T(b),qid) iff T(a) < T(b) or
T(a)=T(b) and pid < qid.
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Vector clocks

« Totally ordered logical clocks
— arbitraryevent order, depends on order of process ids
— l.e. (T(a),pid) < (T(b),qid) does not imply-a b, see a, e
e Vector clocks
— array of N logical clocks in each process, if N processes
— vector timestamps piggybacked on the messages

— rules for incrementing similar to Lamport’s, except
e processeswn componenin array modified
e componentwisenaximum and comparison

e Problems
— storage requirements
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Vector timestamps

(1,0,0) (2,0,0)

@ >
10 (220 - Physical
P2 c g time
my
(0,0,1) (2,2,2)

Ps ® * -
e f

« VT(b) <VT(c), hence b c
* neither VT(b) < VT(e), nor VT(b) < VT(e), henceb || e
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Summary

Local clocks

— drift!

— but needed for timestamping

e Synchronisation algorithms

— must handleariable message delays

Clock compensation estimate average delays
— adjustclocks
— can deal withaulty clocks

Logical clocks
— sufficient forcausal ordering

11 February, 2002

27



