06-06798 Distributed Systems

Lecture 10:
Clocks and Time

11 February, 2002



Overview

e Time service
— requirements and problems
— sources of time

e Clock synchronisation algorithms
— clock skew & drift
— Cristian algorithm
— Berkeley algorithm
— Network Time Protocol
e Logical clocks
— Lamport’s timestamps

11 February, 2002



Time service

 Why needed?

— to measureelaysbetween distributed components
— tosynchronise streame.g. sound and video

— to establiskevent ordering
 causal orderingdid A happen before B?)
e concurrent/overlapping executi@no causal relationship)
— for accuratéimestampgo identify/authenticate
* business transactions :

 serializability in distributed databases
* security protocols

11 February, 2002



Clocks

e |Internal hardware clock
— built-in electronic device

— countsoscillationsoccurring in a quartz crystal at a
definite frequency

— store the result in @unter register
— Interruptgenerated at regular intervals

— Interrupt handler reads the counter register, scales it to
convert to time units (seconds, nanoseconds) and
updatessoftware clock

e e.g. seconds elapsed since 1/01/1970

11 February, 2002 4



Problems with internal clocks

* Fregquency of oscillations
— varies withtemperature
— differentrateon different computers

e a

10:05:17 10:05:14 10:05:15

S I [ —

e Accuracy
— typically 1 sec in 11.6 days

e Centralisedime service?
— Impractical due toariable message delays

11 February, 2002 5



Clock skew and drift

sHcHIcHc

Network

Clock skew
— differencebetween the readings of two clocks

e Clock drift

— difference in reading between a clock and a nominal
perfect reference clogker unit of time of the reference
clock

o typically 10° seconds/second = 1 sec in 11.6 days
11 February, 2002 6



Sources of time

e Universal Coordinated Time (UTC, from French)

— based omtomictime but leap seconds inserted to keep
In phase with astronomical time (Earth’s orbit)

— UTC signals broadcast every second frawioand
satellitestations
 land station accuracy 0.1-10ms due to atmospheric conditions

* Global Positioning System (GPS)
— broadcasts UTC

e Recelivers for UTC and GPS

— available commercially
— used to synchronise local clocks

11 February, 2002 7



Clock synchronisation

External:synchronise with authoritative source of
time
— the absolute value of differenbetween the clock and

the sourcas bounded abovbky D atevery pointin the
synchronisation interval

— timeaccuratdgo within D

Internal:synchronise clocks with each other

— the absolute value of differenbetween the clockis
bounded above by D at every point in the
synchronisation interval

— clocksagreeto within D (not necessarily accurate time)

11 February, 2002 8



Clock compensation

e Assume 2 clocks can each drift at rate R msecs/sec
— maximum difference 2R msecs/sec
— mustresynchronisevery D/2R to agree within D

e Clock correction
— get UTC and correct software clock

 Problems!
— what happens if local clock is 5 secs fast and it is set right?
— timestamped versions of files get confused
— time musteverrun backwards!

— better toscalethe value of internal clock in software

without changing the clock rate
11 February, 2002 9



Synchronisation methods

e Synchronous systems
— simpler, relies on known time bounds on system actions

e Asynchronous systems

— Intranets
» Cristian’s algorithm
» Berkeley algorithm

— Internet
» The Network Time Protocol

11 February, 2002 10



Synchronous systems case

 Internal synchronisatiobetween two processes
— knowboundsMIN, MAX on message delay
— also on clock drift, execution rate

e Assume One sends message to Two with time

— Two can set its clock to t f(MAX+MIN)/2 (estimate of
time taken to send message)

— then the skew is at most (MAX-MIN)/2

— why not t + MIN or t + MAX?
 maximum skew is larger, could be MAX-MIN

11 February, 2002 11



Cristian’s algorithm

Client Time server _ _
- - t Time Server with
0 ,~ eques . .
. UTC receiver gives
‘ h =interrupt |— accurate current
T, € handler time time
UTC Time

Estimatemessage propagatisime byp=(T,-T,-h)/2 (=half of
round-tripof request-reply)

Set clock to UTG@p

Make multiple requestsat spaced out intervalsieasurel -T,,
— but discard any that are over a threshold (could be congestion)
— or take minimum values as the most accurate

11 February, 2002 12



Cristian’s algorithm

 Probabilistic behaviour

— achieves synchronisation only if round-trip short
compared to required accuracy

— high accuracy only for message transmission time close
to minimum
 Problems
— single point ofailure andbottleneck
— could multicast to groupof servers, each with UTC

— animpostoror faulty server can wreak havoc
e use authentication
» agreement protocol for N > 3f clocks, f number of faulty clocks

11 February, 2002 13



The Berkeley algorithm

« Choosamnasterco-ordinator which periodicallgolls slaves
« Master estimates slaves’ local time based on round-trip

o Calculatesaveragdime ofall, ignoring readings with
exceptionally large propagation delay or clocks out of synch

e Sends message to each slave indicating clidgkstment

v/\ 3:00:00

ey

s

3:00:00 3:00:01 3:00:02
3:00:00/ \43:00:00 -10 +25 +15/ \-20
2:59:50 3:00:25 2:59:51 3:00:26 2:59:52 3:00:27

Query Response Adjust

\

11 February, 2002

Synchronisation
feasible to within
20-25 msec for 15
computers, with
drift rate of 2 x 16
and max round trip
propagation time
of 10 msec.

14



The Berkeley algorithm

e Accuracy
— depends on the round-trip time

« Fault-tolerant average
— eliminates readings of faulty clockgrobabilistically

— average over theubsef clocks that differ byip toa
specified amount

 \What if master fails?
— elect another leader

11 February, 2002

15



Network Time Protocol (NTP)

e Multiple time servers across the Internet

* Primaryservers: directly connected to UTC receivers
e Secondanservers: synchronise with primaries

e Tertiary servers: synchronise with secondary, etc

e Scales up to large numbers of servers and clients

s B\ e
= = active synchronisation Copes withfailuresof servers

: _ back hronisation| e.g. if primary’s UTC source
— = backup synchronisalion| ¢4 it hecomes a secondary,

(exchange timing :
. . or if a secondary cannot reach
2 2 information, but do not

use it to synchronise a primary it finds another one.
clocks)

3 3 3 Authenticationused to check
that time comes from trusted

N /
11 February, 2002 sources 16




NTP Synchronisation Modes

e Multicast

— one or moreservers periodically multicast to other servers
onhigh speed AN

— they set clocks assuming small delay

e Procedure Call Mode

— similar to Cristian’s algorithm: clieméguests timérom a
few other servers

— used for higher accuracy or where no multicast

e Symmetric protocol

— used bymasterservers on LANs and layet®sestto
primaries

— highestaccuracy based on pairwise synchronisation
11 February, 2002 17



NTP Symmetric Protocol

Server B T2 T3
P N\
<«—t+0—> «—t'-0>»
Server A T1 T4
g J

e t=transmission delay (e.g. 5ms)

* 0 = clock offset of B relative to A (e.g. 3ms)

 Record localtimes T1=10,T2 =18, T3 =20, T4 =22
Leta=T2-Tl=t+0, b=T4-T3 =1 -0, and assumd’t
Round tripdelaEt+t =a+ b= (T2-T1)+(T4-T3) = 10
Calculate estimate afock offseto = (a-b)/2 = 3

11 February, 2002 18



NTP Symmetric Protocol

T4 = current message receive tineermined at receiver

Every message contains

— T3 = current messagendtime

— T2 =previousreceive messageceivetime

— T1 =previousreceive messagendtime

Data filtering(obtainaverage values of clock offset from values
of o corresponding tominimumt)

Peer selectiofexchange messages with several peers favouring
those closer to primaries)

How good is it?20-30 primaries and 2000 secondaries can
synchronise to within 30 ms

11 February, 2002 19



Logical time

For many purposes it is sufficientdgreeon the
same time (e.g. internal consistency) which need not
be UTC time

Can deduceausal event ordering
a —» b (a occurs before b)
Logical time denotes causal relationships

but the - relationship may not reflectal causality,
only accidental

11 February, 2002 20



Event ordering

Definea —» b (a occurs before b) if

— a and b are events in the same process and a occurs before
b, or

— a s the event of message sent from process A and B is the
event of message receipt by process B

If a - b and b- c then a- c.
- Is partial order.

For events such thatithera - b nor b— a we say
a, b areconcurrentdenoted a || b.

11 February, 2002 21



P4

P2

P3

Example of causal ordering

@ >
a b m;
° » Physical
C (\ time
® ° >
e f
° A - b, c-d
e b C, d- f
e alle

11 February, 2002 22



Logical clocks [Lamport]

* Logical clock= monotonicallyincreasing software
counter (1ot real time!)

— one for each process P, usediforestamping

 How it works
— L, incrementedefore assigning a timestamp to an event

— when P sends message m, P timestamps it with current value
t of L (after incrementing it)piggybackingt with m

— on receiving message (m,t), Q sets its own clagto
maximumof Lo and t, then increments,lbefore
timestamping the message receive event

« Notea - bimplies T(a) < T(b

11 February, 2002 23

What
about
converse?




oF

P2

P3

Totally ordered logical clocks

1 2

@ >
] t\

2 4 > Physical

time
C d
ms
1 5
.

@ ®
f

e
 Problem: T(a) = T(e), and yet a, e distinct.
o Createtotal order by taking account of process ids.

 Then (T(a),pid) < (T(b),qid) iff T(a) < T(b) or
T(a)=T(b) and pid < qid.

11 February, 2002

24



Vector clocks

« Totally ordered logical clocks
— arbitraryevent order, depends on order of process ids
— l.e. (T(a),pid) < (T(b),qid) does not imply-a b, see a, e
e Vector clocks
— array of N logical clocks in each process, if N processes
— vector timestamps piggybacked on the messages

— rules for incrementing similar to Lamport’s, except
e processeswn componenin array modified
e componentwisenaximum and comparison

e Problems
— storage requirements

11 February, 2002 25



Vector timestamps

(1,0,0) (2,0,0)

@ >
10 (220 - Physical
P2 c g time
my
(0,0,1) (2,2,2)

Ps ® * -
e f

« VT(b) <VT(c), hence b c
* neither VT(b) < VT(e), nor VT(b) < VT(e), henceb || e

11 February, 2002 26



Summary

Local clocks

— drift!

— but needed for timestamping

e Synchronisation algorithms

— must handleariable message delays

Clock compensation estimate average delays
— adjustclocks
— can deal withaulty clocks

Logical clocks
— sufficient forcausal ordering

11 February, 2002

27



