
Chapter 4

Digging into Big Data Technology
Components

In This Chapter
▶ Introducing the big data stack
▶ Redundant physical infrastructure
▶ Security infrastructure
▶ Interfaces and feeds to and from applications
▶ Operational databases
▶ Organizing data services and tools
▶ Analytical data warehouses
▶ Introduction to big analytics
▶ Introduction to big data applications

A
s discussed in the first few chapters, big data is about high-volume and
often high-velocity data streams with highly diverse data types. Many

seasoned software architects and developers know how to address one or
even two of these situations quite readily. For example, if you are faced with
high-volume transactional data with fault tolerance requirements, you might
choose to deploy redundant relational database clusters in a data center
with a very fast network infrastructure. Similarly, if the requirements are to
integrate different data types from many known and anonymous sources, the
choice might be to construct an extensible meta-model driving a customized
data warehouse.

However, you may not have had the luxury of creating specific deployments
in a much more dynamic big data world. When you move out of the world
where you own and tightly control your data, you need to create an architec-
tural model for addressing this type of hybrid environment. This new envi-
ronment requires an architecture that understands both the dynamic nature

48 Part II: Technology Foundations for Big Data

of big data and the requirement to apply the knowledge to a business solu-
tion. In this chapter, we examine the architectural considerations associated
with big data. We also dig a bit deeper into the big data technology stack we
introduce in Chapter 1.

Exploring the Big Data Stack
Like any important data architecture, you should design a model that takes
a holistic look at how all the elements need to come together. Although this
will take some time in the beginning, it will save many hours of development
and lots of frustration during the subsequent implementations. You need to
think about big data as a strategy, not a project.

Good design principles are critical when creating (or evolving) an envi-
ronment to support big data — whether dealing with storage, analytics,
reporting, or applications. The environment must include considerations
for hardware, infrastructure software, operational software, management
software, well-defined application programming interfaces (APIs), and even
software developer tools. Your architecture will have to be able to address
all the foundational requirements that we discuss in Chapter 1:

 ✓ Capture

 ✓ Integrate

 ✓ Organize

 ✓ Analyze

 ✓ Act

Figure 4-1 presents the layered reference architecture we introduce in
Chapter 1. It can be used as a framework for how to think about big data
technologies that can address functional requirements for your big data
projects.

This is a comprehensive stack, and you may focus on certain aspects initially
based on the specific problem you are addressing. However, it is important
to understand the entire stack so that you are prepared for the future. You’ll
no doubt use different elements of the stack depending on the problem
you’re addressing.

49 Chapter 4: Digging into Big Data Technology Components

Figure 4-1:
The big data

technology
stack.

Layer 0: Redundant Physical
Infrastructure

At the lowest level of the stack is the physical infrastructure — the hard-
ware, network, and so on. Your company might already have a data center
or made investments in physical infrastructures, so you’re going to want to
find a way to use the existing assets. Big data implementations have very
specific requirements on all elements in the reference architecture, so you
need to examine these requirements on a layer-by-layer basis to ensure that
your implementation will perform and scale according to the demands of
your business. As you start to think about your big data implementation, it
is important to have some overarching principles that you can apply to the
approach. A prioritized list of these principles should include statements
about the following:

 ✓ Performance: How responsive do you need the system to be?
Performance, also called latency, is often measured end to end, based on
a single transaction or query request. Very fast (high-performance, low-
latency) infrastructures tend to be very expensive.

 ✓ Availability: Do you need a 100 percent uptime guarantee of service?
How long can your business wait in the case of a service interruption or
failure? Highly available infrastructures are also very expensive.

50 Part II: Technology Foundations for Big Data

 ✓ Scalability: How big does your infrastructure need to be? How much
disk space is needed today and in the future? How much computing
power do you need? Typically, you need to decide what you need and
then add a little more scale for unexpected challenges.

 ✓ Flexibility: How quickly can you add more resources to the infrastruc-
ture? How quickly can your infrastructure recover from failures? The
most flexible infrastructures can be costly, but you can control the costs
with cloud services, where you only pay for what you actually use (see
Chapter 6 for more on cloud computing).

 ✓ Cost: What can you afford? Because the infrastructure is a set of com-
ponents, you might be able to buy the “best” networking and decide to
save money on storage (or vice versa). You need to establish require-
ments for each of these areas in the context of an overall budget and
then make trade-offs where necessary.

As big data is all about high-velocity, high-volume, and high-data variety,
the physical infrastructure will literally “make or break” the implementa-
tion. Most big data implementations need to be highly available, so the net-
works, servers, and physical storage must be both resilient and redundant.
Resiliency and redundancy are interrelated. An infrastructure, or a system,
is resilient to failure or changes when sufficient redundant resources are in
place, ready to jump into action. In essence, there are always reasons why
even the most sophisticated and resilient network could fail, such as a hard-
ware malfunction. Therefore, redundancy ensures that such a malfunction
won’t cause an outage.

Resiliency helps to eliminate single points of failure in your infrastructure.
For example, if only one network connection exists between your business
and the Internet, no network redundancy exists, and the infrastructure is not
resilient with respect to a network outage. In large data centers with business
continuity requirements, most of the redundancy is in place and can be lever-
aged to create a big data environment. In new implementations, the designers
have the responsibility to map the deployment to the needs of the business
based on costs and performance.

 As more vendors provide cloud-based platform offerings, the design responsi-
bility for the hardware infrastructure often falls to those service providers.

This means that the technical and operational complexity is masked behind a
collection of services, each with specific terms for performance, availability,
recovery, and so on. These terms are described in service-level agreements
(SLAs) and are usually negotiated between the service provider and the cus-
tomer, with penalties for noncompliance.

51 Chapter 4: Digging into Big Data Technology Components

For example, if you contract with a managed service provider, you are theo-
retically absolved from the worry associated with the specifics of the physi-
cal environment and the core components of the data center. The networks,
servers, operating systems, virtualization fabric, requisite management tools,
and day-to-day operations are inclusive in your service agreements. In effect,
this creates a virtual data center. Even with this approach, you should still
know what is needed to build and run a big data deployment so that you can
make the most appropriate selections from the available service offerings.
Despite having an SLA, your organization still has the ultimate responsibility
for performance.

Physical redundant networks
Networks should be redundant and must have enough capacity to accommo-
date the anticipated volume and velocity of the inbound and outbound data
in addition to the “normal” network traffic experienced by the business. As
you begin making big data an integral part of your computing strategy, it is
reasonable to expect volume and velocity to increase.

Infrastructure designers should plan for these expected increases and try to
create physical implementations that are “elastic.” As network traffic ebbs
and flows, so too does the set of physical assets associated with the imple-
mentation. Your infrastructure should offer monitoring capabilities so that
operators can react when more resources are required to address changes in
workloads.

Managing hardware: Storage and servers
Likewise, the hardware (storage and server) assets must have sufficient
speed and capacity to handle all expected big data capabilities. It’s of little
use to have a high-speed network with slow servers because the servers will
most likely become a bottleneck. However, a very fast set of storage and com-
pute servers can overcome variable network performance. Of course, nothing
will work properly if network performance is poor or unreliable.

Infrastructure operations
Another important design consideration is infrastructure operations manage-
ment. The greatest levels of performance and flexibility will be present only
in a well-managed environment. Data center managers need to be able to
anticipate and prevent catastrophic failures so that the integrity of the data,

52 Part II: Technology Foundations for Big Data

and by extension the business processes, is maintained. IT organizations
often overlook and therefore underinvest in this area. We talk more about
what’s involved with operationalizing big data in Chapter 17.

Layer 1: Security Infrastructure
Security and privacy requirements for big data are similar to the require-
ments for conventional data environments. The security requirements have
to be closely aligned to specific business needs. Some unique challenges
arise when big data becomes part of the strategy, which we briefly describe
in this list:

 ✓ Data access: User access to raw or computed big data has about the
same level of technical requirements as non-big data implementations.
The data should be available only to those who have a legitimate busi-
ness need for examining or interacting with it. Most core data storage
platforms have rigorous security schemes and are often augmented with
a federated identity capability, providing appropriate access across the
many layers of the architecture.

 ✓ Application access: Application access to data is also relatively straight-
forward from a technical perspective. Most application programming
interfaces (APIs) offer protection from unauthorized usage or access.
This level of protection is probably adequate for most big data
implementations.

 ✓ Data encryption: Data encryption is the most challenging aspect of
security in a big data environment. In traditional environments, encrypt-
ing and decrypting data really stresses the systems’ resources. With
the volume, velocity, and varieties associated with big data, this prob-
lem is exacerbated. The simplest (brute-force) approach is to provide
more and faster computational capability. However, this comes with a
steep price tag — especially when you have to accommodate resiliency
requirements. A more temperate approach is to identify the data ele-
ments requiring this level of security and to encrypt only the necessary
items.

 ✓ Threat detection: The inclusion of mobile devices and social networks
exponentially increases both the amount of data and the opportunities
for security threats. It is therefore important that organizations take a
multiperimeter approach to security.

We talk more about big data security and governance in Chapter 19. We also
discuss how big data is being used to help detect threats and other security
issues.

53 Chapter 4: Digging into Big Data Technology Components

Interfaces and Feeds to and from
Applications and the Internet

So, physical infrastructure enables everything and security infrastructure
protects all the elements in your big data environment. The next level in
the stack is the interfaces that provide bidirectional access to all the com-
ponents of the stack — from corporate applications to data feeds from the
Internet. An important part of the design of these interfaces is the creation of
a consistent structure that is shareable both inside and perhaps outside the
company as well as with technology partners and business partners.

For decades, programmers have used APIs to provide access to and from
software implementations. Tool and technology providers will go to great
lengths to ensure that it is a relatively straightforward task to create new
applications using their products. Although very helpful, it is sometimes nec-
essary for IT professionals to create custom or proprietary APIs exclusive to
the company. You might need to do this for competitive advantage, a need
unique to your organization, or some other business demand, and it is not
a simple task. APIs need to be well documented and maintained to preserve
the value to the business. For this reason, some companies choose to use API
toolkits to get a jump-start on this important activity.

API toolkits have a couple of advantages over internally developed APIs.
The first is that the API toolkits are products that are created, managed,
and maintained by an independent third party. Second, they are designed to
solve a specific technical requirement. If you need APIs for web applications
or mobile applications, you have several alternatives to get you started.

Take a REST
No discussion of big data APIs would be com-
plete without examining a technology called
Representational State Transfer (REST). REST
was designed specifically for the Internet and
is the most commonly used mechanism for con-
necting one web resource (a server) to another
web resource (a client). A RESTful API provides
a standardized way to create a temporary rela-
tionship (also called loose coupling) between
and among web resources. As the name
implies, loosely coupled resources are not rig-
idly connected and are resilient to changes in

the networks and other infrastructure compo-
nents. For example, if your refrigerator breaks
in the middle of the night, you need to buy a
new one. You might have to wait until a retail
store opens before you can do so. In addition,
you may need to wait longer for delivery. This
is very similar to web resources using RESTful
APIs. Your request may not be answered until
the service is available to address it. Many, if
not all, big data technologies support REST, as
you see in subsequent chapters.

54 Part II: Technology Foundations for Big Data

Big data challenges require a slightly different approach to API develop-
ment or adoption. Because much of the data is unstructured and is gener-
ated outside of the control of your business, a new technique, called Natural
Language Processing (NLP), is emerging as the preferred method for inter-
facing between big data and your application programs. NLP allows you to
formulate queries with natural language syntax instead of a formal query
language like SQL. For most big data users, it will be much easier to ask “List
all married male consumers between 30 and 40 years old who reside in the
southeastern United States and are fans of NASCAR” than to write a 30-line
SQL query for the answer.

 One way to deal with interfaces is to implement a “connector” factory. This
connector factory adds a layer of abstraction and predictability to the pro-
cess, and it leverages many of the lessons and techniques used in Service
Oriented Architecture (SOA). For more information on SOA, check out Service
Oriented Architecture (SOA) For Dummies, 2nd Edition (written by our team
and published by John Wiley & Sons, Inc.).

Because most data gathering and movement have very similar characteris-
tics, you can design a set of services to gather, cleanse, transform, normal-
ize, and store big data items in the storage system of your choice. To create
as much flexibility as necessary, the factory could be driven with interface
descriptions written in Extensible Markup Language (XML). This level of
abstraction allows specific interfaces to be created easily and quickly with-
out the need to build specific services for each data source.

In practice, you could create a description of SAP or Oracle application inter-
faces using something like XML. Each interface would use the same under-
lying software to migrate data between the big data environment and the
production application environment independent of the specifics of SAP or
Oracle. If you need to gather data from social sites on the Internet (such as
Facebook, Google+, and so on), the practice would be identical. Describe the
interfaces to the sites in XML, and then engage the services to move the data
back and forth. Typically, these interfaces are documented for use by inter-
nal and external technologists.

Layer 2: Operational Databases
At the core of any big data environment are the database engines containing
the collections of data elements relevant to your business. These engines
need to be fast, scalable, and rock solid. They are not all created equal, and
certain big data environments will fare better with one engine than another,
or more likely with a mix of database engines. For example, although it is
possible to use relational database management systems (RDBMSs) for all
your big data implementations, it is not practical to do so because of perfor-
mance, scale, or even cost. A number of different database technologies are

55 Chapter 4: Digging into Big Data Technology Components

available, and you must take care to choose wisely. We talk more about these
choices in Chapter 7.

No single right choice exists regarding database languages. Although SQL is
the most prevalent database query language in use today, other languages
may provide a more effective or efficient way of solving your big data chal-
lenges. It is useful to think of the engines and languages as tools in an “imple-
menter’s toolbox.” Your job is to choose the right tool.

For example, if you use a relational model, you will probably use SQL to
query it. However, you can also use alternative languages like Python or Java.
It is very important to understand what types of data can be manipulated by
the database and whether it supports true transactional behavior. Database
designers describe this behavior with the acronym ACID. It stands for

 ✓ Atomicity: A transaction is “all or nothing” when it is atomic. If any part of
the transaction or the underlying system fails, the entire transaction fails.

 ✓ Consistency: Only transactions with valid data will be performed on
the database. If the data is corrupt or improper, the transaction will not
complete and the data will not be written to the database.

 ✓ Isolation: Multiple, simultaneous transactions will not interfere with
each other. All valid transactions will execute until completed and in the
order they were submitted for processing.

 ✓ Durability: After the data from the transaction is written to the data-
base, it stays there “forever.”

Table 4-1 offers a comparison of these characteristics of SQL and NoSQL
databases.

Table 4-1 Important Characteristics of SQL and NoSQL Databases
Engine Query

Language
MapReduce Data Types Transactions Examples

Relational SQL,
Python, C

No Typed ACID PostgreSQL,
Oracle, DB/2

Columnar Ruby Hadoop Predefined
and typed

Yes, if
enabled

HBase

Graph Walking,
Search,
Cypher

No Untyped ACID Neo4J

Document Commands JavaScript Typed No MongoDB,
CouchDB

Key-value Lucene,
Commands

JavaScript BLOB,
semityped

No Riak, Redis

56 Part II: Technology Foundations for Big Data

After you understand your requirements and understand what data you’re
gathering, where to put it, and what to do with it, you need to organize it so
that it can be consumed for analytics, reporting, or specific applications.

Layer 3: Organizing Data
Services and Tools

Organizing data services and tools capture, validate, and assemble various big
data elements into contextually relevant collections. Because big data is mas-
sive, techniques have evolved to process the data efficiently and seamlessly.
MapReduce, covered in Chapter 8, is one heavily used technique. Suffice it to
say here that many of these organizing data services are MapReduce engines,
specifically designed to optimize the organization of big data streams.

Organizing data services are, in reality, an ecosystem of tools and technolo-
gies that can be used to gather and assemble data in preparation for further
processing. As such, the tools need to provide integration, translation, nor-
malization, and scale. Technologies in this layer include the following:

 ✓ A distributed file system: Necessary to accommodate the decomposi-
tion of data streams and to provide scale and storage capacity

 ✓ Serialization services: Necessary for persistent data storage and multi-
language remote procedure calls (RPCs)

 ✓ Coordination services: Necessary for building distributed applications
(locking and so on)

 ✓ Extract, transform, and load (ETL) tools: Necessary for the loading and
conversion of structured and unstructured data into Hadoop

 ✓ Workflow services: Necessary for scheduling jobs and providing a struc-
ture for synchronizing process elements across layers

In Chapters 9 and 10, we examine Hadoop, the most widely used set of prod-
ucts for organizing big data. It is an open source initiative maintained by the
Apache Foundation.

Layer 4: Analytical Data Warehouses
The data warehouse , and its companion the data mart, have long been the
primary techniques that organizations use to optimize data to help decision

57 Chapter 4: Digging into Big Data Technology Components

makers. Typically, data warehouses and marts contain normalized data
gathered from a variety of sources and assembled to facilitate analysis of the
business. Data warehouses and marts simplify the creation of reports and
the visualization of disparate data items. They are generally created from
relational databases, multidimensional databases, flat files, and object
databases — essentially any storage architecture. In a traditional environ-
ment, where performance may not be the highest priority, the choice of the
underlying technology is driven by the requirements for the analysis, report-
ing, and visualization of the company data.

As the organization of the data and its readiness for analysis are key, most
data warehouse implementations are kept current via batch processing. The
problem is that batch-loaded data warehouses and data marts may be insuf-
ficient for many big data applications. The stress imposed by high-velocity
data streams will likely require a more real-time approach to big data ware-
houses. This doesn’t mean that you won’t be creating and feeding an analyti-
cal data warehouse or a data mart with batch processes. Rather, you may end
up having multiple data warehouses or data marts, and the performance and
scale will reflect the time requirements of the analysts and decision makers.

Because many data warehouses and data marts are comprised of data gath-
ered from various sources within a company, the costs associated with the
cleansing and normalizing of the data must also be addressed. With big data,
you find some key differences:

 ✓ Traditional data streams (from transactions, applications, and so on)
can produce a lot of disparate data.

 ✓ Dozens of new data sources also exist, each of them needing some
degree of manipulation before it can be timely and useful to the
business.

 ✓ Content sources will also need to be cleansed, and these may require
different techniques than you might use with structured data.

Historically, the contents of data warehouses and data marts were organized
and delivered to business leaders in charge of strategy and planning. With
big data, we are seeing a new set of teams that are leveraging data for deci-
sion making. Many big data implementations provide real-time capabilities,
so businesses should be able to deliver content to enable individuals with
operational roles to address issues such as customer support, sales opportu-
nities, and service outages in near real time. In this way, big data helps move
action from the back office to the front office.

In Chapter 11, we examine several technology approaches for big data ware-
housing, with recommendations for using them effectively and efficiently.

58 Part II: Technology Foundations for Big Data

Big Data Analytics
Existing analytics tools and techniques will be very helpful in making sense
of big data. However, there is a catch. The algorithms that are part of these
tools have to be able to work with large amounts of potentially real-time and
disparate data. The infrastructure that we cover earlier in the chapter will
need to be in place to support this. And, vendors providing analytics tools
will also need to ensure that their algorithms work across distributed imple-
mentations. Because of these complexities, we also expect a new class of
tools to help make sense of big data.

We list three classes of tools in this layer of our reference architecture. They
can be used independently or collectively by decision makers to help steer
the business. The three classes of tools are as follows:

 ✓ Reporting and dashboards: These tools provide a “user-friendly” repre-
sentation of the information from various sources. Although a mainstay
in the traditional data world, this area is still evolving for big data. Some
of the tools that are being used are traditional ones that can now access
the new kinds of databases collectively called NoSQL (Not Only SQL).
We explore NoSQL databases in Chapter 7.

 ✓ Visualization: These tools are the next step in the evolution of report-
ing. The output tends to be highly interactive and dynamic in nature.
Another important distinction between reports and visualized output
is animation. Business users can watch the changes in the data utiliz-
ing a variety of different visualization techniques, including mind maps,
heat maps, infographics, and connection diagrams. Often, reporting and
visualization occur at the end of the business activity. Although the data
may be imported into another tool for further computation or examina-
tion, this is the final step.

 ✓ Analytics and advanced analytics: These tools reach into the data ware-
house and process the data for human consumption. Advanced analyt-
ics should explicate trends or events that are transformative, unique,
or revolutionary to existing business practice. Predictive analytics and
sentiment analytics are good examples of this science. Issues relating to
analytics are covered in greater detail in Part IV, including Chapters 12,
13, and 14.

Big Data Applications
Custom and third-party applications offer an alternative method of shar-
ing and examining big data sources. Although all the layers of the reference

59 Chapter 4: Digging into Big Data Technology Components

architecture are important in their own right, this layer is where most of the
innovation and creativity is evident.

These applications are either horizontal, in that they address problems that
are common across industries, or vertical, in that they are intended to help
solve an industry-specific problem. Needless to say, you have many applica-
tions to choose from, and many more coming. We expect categories of com-
mercially available big data applications to grow as fast or faster than the
adoption rate of the underlying technology. The most prevalent categories as
of this writing are log data applications (Splunk, Loggly), ad/media applica-
tions (Bluefin, DataXu), and marketing applications (Bloomreach, Myrrix).
Solutions are also being developed for the healthcare industry, manufactur-
ing, and transportation management, to name a few.

Like any other custom application development initiative, the creation of big
data applications will require structure, standards, rigor, and well-defined
APIs. Most business applications wanting to leverage big data will need to
subscribe to APIs across the entire stack. It may be necessary to process raw
data from the low-level data stores and combine the raw data with synthe-
sized output from the warehouses. As you might expect, the operative term
is custom, and it creates a different type of pressure on the big data imple-
mentation.

Big data moves fast and changes in the blink of an eye, so software develop-
ment teams need to be able to rapidly create applications germane to solving
the business challenge of the moment. Companies may need to think about
creating development “tiger teams,” which rapidly respond to changes in the
business environment by creating and deploying applications on demand. In
fact, it may be more appropriate to think of these applications as “semicus-
tom” because they involve more assembly than actual low-level coding.

 Over time, we expect certain types of applications will be created, in context,
by the end user, who can assemble the solution from a palette of components.
Needless to say, this is where the structure and standardization are most nec-
essary. Software developers need to create consistent, standardized develop-
ment environments and devise new development practices for rapid rollout of
big data applications.

60 Part II: Technology Foundations for Big Data

