
Chapter 7

Operational Databases
In This Chapter
▶ Taking a look at the relational database
▶ Examining nonrelational and key-value pair databases
▶ Exploring document and columnar databases
▶ Getting to know graph and spatial databases
▶ Pursuing the polyglot

B
ig data is becoming an important element in the way organizations
are leveraging high-volume data at the right speed to solve specific

data problems. However, big data does not live in isolation. To be effective,
companies often need to be able to combine the results of big data analysis
with the data that exists within the business. In other words, you can’t think
about big data in isolation from operational data sources. There are a variety
of important operational data services. In this chapter, we provide an expla-
nation of what these sources are so that you can understand how the data
inevitably will be used in conjunction with big data solutions.

One of the most important services provided by operational databases (also
called data stores) is persistence. Persistence guarantees that the data stored
in a database won’t be changed without permissions and that it will avail-
able as long as it is important to the business. What good is a database if it
cannot be trusted to protect the data you put in it? Given this most important
requirement, you must then think about what kind of data you want to per-
sist, how can you access and update it, and how can you use it to make busi-
ness decisions. At this most fundamental level, the choice of your database
engines is critical to your overall success with your big data implementation.

The forefather of persistent data stores is the relational database manage-
ment system, or RDBMS. In its infancy, the computing industry used what are
now considered primitive techniques for data persistence. In essence, these
are the systems of record and are foundational to how companies store data
about everything from customer transactions to the details of the operating

86 Part III: Big Data Management

the business. Even though the underlying technology has been around for
quite some time, many of these systems are in operation today because the
businesses they support are highly dependent on the data. To replace them
would be akin to changing the engines of an airplane on a transoceanic flight.
You may recall the “flat files” or “network” data stores that were prevalent
before 1980 or so. Although these mechanisms were useful, they were very
difficult to master and always required system programmers to write custom
programs to manipulate the data. The relational model is still in wide usage
today and has an important role to play in the evolution of big data.

Relational databases are built on one or more relations and are represented
by tables. These tables are defined by their columns, and the data is stored
in the rows. The primary key is often the first column in the table. The con-
sistency of the database and much of its value are achieved by “normalizing”
the data. As the name implies, normalized data has been converted from
native format into a shared, agreed upon format. For example in one data-
base you might have “telephone” as XXX-XXX-XXXX while in another it might
be XXXXXXXXX. To achieve a consistent view of the information, the field
will need to be normalized to one form or the other. Five levels of standards
exist for normalization. The choice of normal form is often relegated to the
database designer and is mostly invisible to the end users. The collection of
tables, keys, elements, and so on is referred to as the database schema.

Over the years, the structured query language (SQL) has evolved in lock step
with RDBMS technology and is the most widely used mechanism for creating,
querying, maintaining, and operating relational databases. These tasks are
referred to as CRUD: Create, retrieve, update, and delete are common, related
operations you can use directly on a database or through an application pro-
gramming interface (API). Although originally devised for use with RDBMS,
the popularity of SQL has also made it prevalent among nonrelational data-
bases, as we cover later in this chapter.

How the relational database evolved
Throughout the history of the relational data-
base, many specialty database technologies
appeared specifically to address shortcomings
in early RDBMS products. We witnessed the
emergence of object databases, content data-
bases, data warehouses, data marts, and others.
For companies that needed these new capa-
bilities, they created independent solutions and
integrated these new solutions with the existing
RDBMS applications. This was tedious, clumsy,
and costly. Over time, RDBMSs embraced these

new technologies and embedded them in their
core product offerings, eliminating the necessity
to include additional, now redundant, solutions.
We suspect this will occur with big data as well.
Given the fundamental differences between big
data and traditional data solutions, the encap-
sulation of big data technologies into RDBMSs
will take a few years. In contrast, we are already
beginning to see the big data technologies
embrace SQL and other traditional RDBMS fea-
tures as peers to MapReduce.

87 Chapter 7: Operational Databases

RDBMSs Are Important in
a Big Data Environment

In companies both small and large, most of their important operational
information is probably stored in RDBMSs. Many companies have different
RDBMSs for different areas of their business. Transactional data might be
stored in one vendor’s database, while customer information could be stored
in another. Knowing what data is stored and where it is stored are critical
building blocks in your big data implementation. It is not likely you will use
RDBMSs for the core of the implementation, but you will need to rely on the
data stored in RDBMSs to create the highest level of value to the business
with big data. Although many different commercial relational databases are
available from companies like Oracle, IBM, and Microsoft, you need to under-
stand an open source relational database called PostgreSQL.

PostgreSQL relational database
PostgreSQL (www.postgresql.org) is the most widely used open source
relational database. It was originally developed at the University of California
at Berkeley and has been under active development as an open source proj-
ect for more than 15 years. Several factors contribute to the popularity of
PostgreSQL. As an RDBMS with support for the SQL standard, it does all the
things expected in a database product, plus its longevity and wide usage
have made it “battle tested.” It is also available on just about every variety of
operating system, from PCs to mainframes.

Providing the basics and doing so reliably are only part of the story.
PostgreSQL also supports many features only found in expensive proprietary
RDBMSs, including the following:

 ✓ Capability to directly handle “objects” within the relational schema

 ✓ Foreign keys (referencing keys from one table in another)

 ✓ Triggers (events used to automatically start a stored procedure)

 ✓ Complex queries (subqueries and joins across discrete tables)

 ✓ Transactional integrity

 ✓ Multiversion concurrency control

http://www.postgresql.org

88 Part III: Big Data Management

The real power of PostgreSQL is its extensibility. Users and database pro-
grammers can add new capabilities without affecting the fundamental opera-
tion or reliability of the database. Possible extensions include

 ✓ Data types

 ✓ Operators

 ✓ Functions

 ✓ Indexing methods

 ✓ Procedural languages

This high level of customization makes PostgreSQL desirable when rigid, pro-
prietary products won’t get the job done. It is infinitely extensible.

Finally, the PostgreSQL license permits modification and distribution in any
form, open or closed source. Any modifications can be kept private or shared
with the community as you wish.

Although relational databases (including PostgreSQL) play a key role in the
big data “enterprise,” you also have some alternative approaches.

Nonrelational Databases
Nonrelational databases do not rely on the table/key model endemic to
RDBMSs. A number of nonrelational database technologies are covered
throughout this chapter, each with its own set of unique capabilities focused
on specific problems outside the scope of traditional RDBMSs. In short,
specialty data in the big data world requires specialty persistence and data
manipulation techniques. Although these new styles of databases offer some
answers to your big data challenges, they are not an express ticket to the
finish line.

One emerging, popular class of nonrelational database is called not only SQL
(NoSQL). Originally the originators envisioned databases that did not require
the relational model and SQL. As these products were introduced into the
market, the definition softened a bit and now they are thought of as “not only
SQL,” again bowing to the ubiquity of SQL. The other class is databases that
do not support the relational model, but rely on SQL as a primary means of
manipulating the data within. Even though relational and nonrelational data-
bases have similar fundamentals, how the fundamentals are accomplished

89 Chapter 7: Operational Databases

creates the differentiation. Nonrelational database technologies have the fol-
lowing characteristics in common:

 ✓ Scalability: In this instance, we are referring to the capability to write
data across multiple data stores simultaneously without regard to
physical limitations of the underlying infrastructure. Another important
dimension is seamlessness. The databases must be able to expand and
contract in response to data flows and do so invisibly to the end users.

 ✓ Data and Query model: Instead of the row, column, key structure, non-
relational databases use specialty frameworks to store data with a requi-
site set of specialty query APIs to intelligently access the data.

 ✓ Persistence design: Persistence is still a critical element in nonrelational
databases. Due to the high velocity, variety, and volume of big data,
these databases use difference mechanisms for persisting the data. The
highest performance option is “in memory,” where the entire database is
kept in the very fast memory system of your servers.

 ✓ Interface diversity: Although most of these technologies support
RESTful APIs as their “go to” interface, they also offer a wide variety
of connection mechanisms for programmers and database managers,
including analysis tools and reporting/visualization.

 ✓ Eventual Consistency: While RDBMS uses ACID (Atomicity, Consistency,
Isolation, Durability) as a mechanism for ensuring the consistency of
data, non-relational DBMS use BASE. BASE stands for Basically Available,
Soft state, and Eventual Consistency. Of these, eventual consistency is
most important because it is responsible for conflict resolution when
data is in motion between nodes in a distributed implementation. The
data state is maintained by the software and the access model relies on
basic availability.

Next we examine some of the most popular styles and the open source imple-
mentations of nonrelational databases.

Key-Value Pair Databases
By far, the simplest of the NoSQL databases are those employing the key-
value pair (KVP) model. KVP databases do not require a schema (like
RDBMSs) and offer great flexibility and scalability. KVP databases do not
offer ACID (Atomicity, Consistency, Isolation, Durability) capability, and
require implementers to think about data placement, replication, and fault
tolerance as they are not expressly controlled by the technology itself. KVP
databases are not typed. As a result, most of the data is stored as strings.
Table 7-1 lists some sample key-value pairs.

90 Part III: Big Data Management

Table 7-1 Sample Key-Value Pairs
Key Value
Color Blue
Libation Beer
Hero Soldier

This is a very simplified set of keys and values. In a big data implementation,
many individuals will have differing ideas about colors, libations, and heroes,
as presented in Table 7-2.

Table 7-2 Big Data Key-Value Pairs
Key Value
FacebookUser12345_Color Red
TwitterUser67890_Color Brownish
FoursquareUser45678_Libation “White wine”
Google+User24356_Libation “Dry martini with a twist”
LinkedInUser87654_Hero “Top sales performer”

As the number of users increases, keeping track of precise keys and related
values can be challenging. If you need to keep track of the opinions of mil-
lions of users, the number of key-value pairs associated with them can
increase exponentially. If you do not want to constrain choices for the values,
the generic string representation of KVP provides flexibility and readability.

You might need some additional help organizing data in a key-value database.
Most offer the capability to aggregate keys (and their related values) into a
collection. Collections can consist of any number of key-value pairs and do
not require exclusive control of the individual KVP elements.

Riak key-value database
One widely used open source key-value pair database is called Riak
(http://wiki.basho.com). It is developed and supported by a company
called Basho Technologies (www.basho.com) and is made available under
the Apache Software License v2.0.

http://wiki.basho.com/
http://www.basho.com

91 Chapter 7: Operational Databases

Riak is a very fast and scalable implementation of a key-value database. It
supports a high-volume environment with fast-changing data because it is
lightweight. Riak is particularly effective at real-time analysis of trading in
financial services. It uses “buckets” as an organizing mechanism for collec-
tions of keys and values. Riak implementations are clusters of physical or vir-
tual nodes arranged in a peer-to-peer fashion. No master node exists, so the
cluster is resilient and highly scalable. All data and operations are distributed
across the cluster. Riak clusters have an interesting performance profile.
Larger clusters (with more nodes) perform better and faster than clusters
with fewer nodes. Communication in the cluster is implemented via a special
protocol called Gossip. Gossip stores status information about the cluster
and shares information about buckets.

Riak has many features and is part of an ecosystem consisting of the following:

 ✓ Parallel processing: Using MapReduce, Riak supports a capability to
decompose and recompose queries across the cluster for real-time anal-
ysis and computation.

 ✓ Links and link walking: Riak can be constructed to mimic a graph
database using links. A link can be thought of as a one-way connection
between key-value pairs. Walking (following) the links will provide a map
of relationships between key-value pairs.

 ✓ Search: Riak Search has a fault-tolerant, distributed full-text searching
capability. Buckets can be indexed for rapid resolution of value to keys.

 ✓ Secondary indexes: Developers can tag values with one or more key
field values. The application can then query the index and return a list
of matching keys. This can be very useful in big data implementations
because the operation is atomic and will support real-time behaviors.

Riak implementations are best suited for

 ✓ User data for social networks, communities, or gaming

 ✓ High-volume, media-rich data gathering and storage

 ✓ Caching layers for connecting RDBMS and NoSQL databases

 ✓ Mobile applications requiring flexibility and dependability

Document Databases
You find two kinds of document databases. One is often described as a repos-
itory for full document-style content (Word files, complete web pages, and so
on). The other is a database for storing document components for permanent

92 Part III: Big Data Management

storage as a static entity or for dynamic assembly of the parts of a document.
The structure of the documents and their parts is provided by JavaScript
Object Notation (JSON) and/or Binary JSON (BSON). Document databases
are most useful when you have to produce a lot of reports and they need
to be dynamically assembled from elements that change frequently. A good
example is document fulfillment in healthcare, where content composition
will vary based on member profile (age, residency, income level), healthcare
plan, and government program eligibility. For big data implementations, both
styles are important, so you should understand the details of each.

At its core, JSON is a data-interchange format, based on a subset of the
JavaScript programming language. Although part of a programming language,
it is textual in nature and very easy to read and write. It also has the advan-
tage of being easy for computers to handle. Two basic structures exist in
JSON, and they are supported by many, if not all, modern programming lan-
guages. The first basic structure is a collection of name/value pairs, and they
are represented programmatically as objects, records, keyed lists, and so
on. The second basic structure is an ordered list of values, and they are
represented programmatically as arrays, lists, or sequences. BSON is a
binary serialization of JSON structures designed to increase performance
and scalability.

Document databases are becoming a gold standard for big data adoption, so
we examine two of the most popular implementations.

MongoDB
MongoDB (www.mongodb.com) is the project name for the “hu(mongo)us
database” system. It is maintained by a company called 10gen as open source
and is freely available under the GNU AGPL v3.0 license. Commercial licenses
with full support are available from 10gen (www.10gen.com).

MongoDB is growing in popularity and may be a good choice for the data
store supporting your big data implementation. MongoDB is composed of
databases containing “collections.” A collection is composed of “documents,”
and each document is composed of fields. Just as in relational databases, you
can index a collection. Doing so increases the performance of data lookup.
Unlike other databases, however, MongoDB returns something called a
“cursor,” which serves as a pointer to the data. This is a very useful capabil-
ity because it offers the option of counting or classifying the data without
extracting it. Natively, MongoDB supports BSON, the binary implementation
of JSON documents.

http://www.mongodb.com/
http://www.10gen.com

93 Chapter 7: Operational Databases

MongoDB is also an ecosystem consisting of the following elements:

 ✓ High-availability and replication services for scaling across local and
wide-area networks.

 ✓ A grid-based file system (GridFS), enabling the storage of large objects
by dividing them among multiple documents.

 ✓ MapReduce to support analytics and aggregation of different collec-
tions/documents.

 ✓ A sharding service that distributes a single database across a cluster of
servers in a single or in multiple data centers. The service is driven by
a shard key. The shard key is used to distribute documents intelligently
across multiple instances.

 ✓ A querying service that supports ad hoc queries, distributed queries,
and full-text search.

Effective MongoDB implementations include

 ✓ High-volume content management

 ✓ Social networking

 ✓ Archiving

 ✓ Real-time analytics

CouchDB
Another very popular nonrelational database is CouchDB (http://
couchdb.apache.org). Like MongoDB, CouchDB is open source. It is main-
tained by the Apache Software Foundation (www.apache.org) and is made
available under the Apache License v2.0. Unlike MongoDB, CouchDB was
designed to mimic the web in all respects. For example, CouchDB is resilient
to network dropouts and will continue to operate beautifully in areas where
network connectivity is spotty. It is also at home on a smartphone or in a
data center. This all comes with a few trade-offs. Because of the underlying
web mimicry, CouchDB is high latency resulting in a preference for local data
storage. Although capable of working in a non-distributed manner, CouchDB
is not well suited to smaller implementations. You must determine whether
these trade-offs can be ignored as you begin your big data implementation.

CouchDB databases are composed of documents consisting of fields and
attachments as well as a “description” of the document in the form of meta-
data that is automatically maintained by the system. The underlying technol-
ogy features all ACID capabilities that you are familiar with from the RDBMS

http://couchdb.apache.org/
http://couchdb.apache.org/
http://www.apache.org

94 Part III: Big Data Management

world. The advantage in CouchDB over relational is that the data is packaged
and ready for manipulation or storage rather than scattered across rows and
tables.

CouchDB is also an ecosystem with the following capabilities:

 ✓ Compaction: The databases are compressed to eliminate wasted space
when a certain level of emptiness is reached. This helps performance
and efficiency for persistence.

 ✓ View model: A mechanism for filtering, organizing, and reporting on
data utilizing a set of definitions that are stored as documents in the
database. You find a one-to-many relationship of databases to views, so
you can create many different ways of representing the data you have
“sliced and diced.”

 ✓ Replication and distributed services: Document storage is designed to
provide bidirectional replication. Partial replicas can be maintained to
support criteria-based distribution or migration to devices with limited
connectivity. Native replication is peer based, but you can implement
Master/Slave, Master/Master, and other types of replication modalities.

Effective CouchDB implementations include

 ✓ High-volume content management

 ✓ Scaling from smartphone to data center

 ✓ Applications with limited or slow network connectivity

Columnar Databases
Relational databases are row oriented, as the data in each row of a table is
stored together. In a columnar, or column-oriented database, the data is
stored across rows. Although this may seem like a trivial distinction, it is the
most important underlying characteristic of columnar databases. It is very
easy to add columns, and they may be added row by row, offering great flex-
ibility, performance, and scalability. When you have volume and variety of
data, you might want to use a columnar database. It is very adaptable; you
simply continue to add columns.

HBase columnar database
One of the most popular columnar databases is HBase (http://hbase.
apache.org). It, too, is a project in the Apache Software Foundation distrib-
uted under the Apache Software License v2.0. HBase uses the Hadoop file

http://hbase.apache.org/
http://hbase.apache.org/

95 Chapter 7: Operational Databases

system and MapReduce engine for its core data storage needs. For more on
MapReduce, refer to Chapter 8; for more on Hadoop, check out Chapter 9.

The design of HBase is modeled on Google’s BigTable (an efficient form of
storing nonrelational data). Therefore, implementations of HBase are highly
scalable, sparse, distributed, persistent multidimensional sorted maps. The
map is indexed by a row key, column key, and a timestamp; each value in the
map is an uninterpreted array of bytes. When your big data implementation
requires random, real-time read/write data access, HBase is a very good solu-
tion. It is often used to store results for later analytical processing.

Important characteristics of HBase include the following:

 ✓ Consistency: Although not an “ACID” implementation, HBase offers
strongly consistent reads and writes and is not based on an eventually
consistent model. This means you can use it for high-speed require-
ments as long as you do not need the “extra features” offered by RDBMS
like full transaction support or typed columns.

 ✓ Sharding: Because the data is distributed by the supporting file system,
HBase offers transparent, automatic splitting and redistribution of its
content.

 ✓ High availability: Through the implementation of region servers, HBase
supports LAN and WAN failover and recovery. At the core, there is a
master server responsible for monitoring the region servers and all
metadata for the cluster.

 ✓ Client API: HBase offers programmatic access through a Java API.

 ✓ Support for IT operations: Implementers can expose performance and
other metrics through a set of built-in web pages.

HBase implementations are best suited for

 ✓ High-volume, incremental data gathering and processing

 ✓ Real-time information exchange (for example, messaging)

 ✓ Frequently changing content serving

Graph Databases
The fundamental structure for graph databases is called “node-relationship.”
This structure is most useful when you must deal with highly interconnected
data. Nodes and relationships support properties, a key-value pair where the
data is stored. These databases are navigated by following the relationships.
This kind of storage and navigation is not possible in RDBMSs due to the rigid
table structures and the inability to follow connections between the data

96 Part III: Big Data Management

wherever they might lead us. A graph database might be used to manage geo-
graphic data for oil exploration or to model and optimize a telecommunica-
tions provider’s networks.

Neo4J graph database
One of the most widely used graph databases is Neo4J (www.neo4j.org). It
is an open source project licensed under the GNU public license v3.0. A sup-
ported, commercial version is provided by Neo Technology under the GNU
AGPL v3.0 and commercial licensing. Neo4J is an ACID transaction database
offering high availability through clustering. It is a trustworthy and scalable
database that is easy to model because of the node-relationship properties’
fundamental structure and how naturally it maps to our own human relation-
ships. It does not require a schema, nor does it require data typing, so it is
inherently very flexible.

With this flexibility comes a few limitations. Nodes cannot reference them-
selves directly. For example, you (as a node) cannot also be your own father
or mother (as relationships), but you can be a father or mother. There might
be real world cases where self-reference is required. If so, a graph data-
base is not the best solution since the rules about self-reference are strictly
enforced. While the replication capability is very good, Neo4J can only rep-
licate entire graphs, placing a limit on the overall size of the graph (approxi-
mately 34 billion of nodes and 34 billion relationships).

Important characteristics of Neo4J include the following:

 ✓ Integration with other databases: Neo4J supports transaction manage-
ment with rollback to allow seamless interoperability with nongraphing
data stores.

 ✓ Synchronization services: Neo4J supports event-driven behaviors via
an event bus, periodic synchronization using itself, or an RDBMS as the
master, and traditional batch synchronization.

 ✓ Resiliency: Neo4J supports cold (that is, when database is not running)
and hot (when it is running) backups, as well as a high-availability clus-
tering mode. Standard alerts are available for integration with existing
operations management systems.

 ✓ Query language: Neo4J supports a declarative language called Cypher,
designed specifically to query graphs and their components. Cypher
commands are loosely based on SQL syntax and are targeted at ad hoc
queries of the graph data.

http://www.neo4j.org

97 Chapter 7: Operational Databases

Neo4J implementations are best suited for

 ✓ Social networking

 ✓ Classification of biological or medical domains

 ✓ Creating dynamic communities of practice or interest

Spatial Databases
Whether you know it or not, you may interact with spatial data every day. If
you use a smartphone or Global Positioning System (GPS) for directions to
a particular place, or if you ask a search engine for the locations of seafood
restaurants near a physical address or landmark, you are using applications
relying on spatial data. Spatial data itself is standardized through the efforts
of the Open Geospatial Consortium (OGC; www.opengeospatial.org),
which establishes OpenGIS (Geographic Information System) and a number
of other standards for spatial data.

This is important because spatial databases are implementations of the OGC
standards, and your company might have specific needs met (or not met)
by the standards. A spatial database becomes important when organizations
begin to leverage several different dimensions of data to help make a deci-
sion. For example, a meteorologist doing research might want to store and
evaluate data related to a hurricane, including temperature, wind speed, and
humidity, and model those results in three dimensions.

In their simplest form, spatial databases store data about 2-dimensional,
2.5-dimensional, and 3-dimensional objects. You are probably familiar with
2D and 3D objects as we interact with them all the time. A 2D object has
length and width. A 3D object adds depth to the length and width. A page
from this book is a 2D object, while the entire book is a 3D object. What
about 2.5D? 2.5D objects are a special type of spatial data. They are 2D
objects with elevation as the extra “half” dimension. Most 2.5D spatial data-
bases contain mapping information and are often referred to as Geographic
Information Systems (GISs).

The atomic elements of spatial databases are lines, points, and polygons.
They can be combined in any fashion to represent any object constrained
by 2, 2.5, or 3 dimensions. Due to the special nature of spatial data objects,
designers created indexing mechanisms (spatial indices) designed to support
ad hoc queries and visual representations of the contents of the database.
For example, a spatial index would answer the query “What is the distance
between one point and another point?” or “Does a specific line intersect
with a particular set of polygons?” If this seems like a huge problem, that’s

http://www.opengeospatial.org/

98 Part III: Big Data Management

because it is. Spatial data may well represent the biggest big data challenge
of all.

PostGIS/OpenGEO Suite
PostGIS (www.postgis.org) is an open source project maintained by
Refractions Research (www.refractions.net) and is licensed under the
GNU General Public License (GPL). PostGIS is also supplied as part of the
OpenGeo Suite community edition and is offered and supported by OpenGeo
(www.opengeo.org) under an enterprise license.

PostGIS is a little different than some of the other databases discussed in this
chapter. It is a specialized, layered implementation running on the workhorse
RDBMS PostgreSQL. This approach offers the best of both worlds. You get all
the benefits of an SQL RDBMS (such as transactional integrity and ACID) and
support for the specialized operations needed for spatial applications (repro-
jection, geodetic support, geometry conversion, and so on).

Although the database itself is very important, you will also require
other pieces of technology to address spatial application requirements.
Fortunately, PostGIS is part of an ecosystem of components designed to work
together to address these needs. In addition to PostGIS, the OpenGEO Suite
consists of the following:

 ✓ GeoServer: Implemented in Java, the GeoServer can publish spatial
information from several of the major sources of spatial data on the
web. It can integrate with Google Earth and also has an excellent web-
based administrative front end.

 ✓ OpenLayers: A library for JavaScript that is useful for displaying maps
and other representations of spatial data in a web browser. It can manip-
ulate images from most of the mapping sources on the web, including
Bing Maps, Google Maps, Yahoo! Maps, OpenStreetMap, and so on.

 ✓ GeoExt: Designed to make the map information from OpenLayers
readily available to the web application developer. GeoExt widgets
can be used to create editing, viewing, styling, and other interactive
web experiences.

 ✓ GeoWebCache: After you have the data in a server and can display it
in a browser, you need to find a way to make it fast. GeoWebCache is
the accelerator. It caches chunks of image data (called tiles) and makes
them available for rapid delivery to the display device.

http://www.postgis.org
http://www.refractions.net
http://www.opengeo.org

99 Chapter 7: Operational Databases

While many of the uses of spatial data involve maps and locations, spatial
data has many other contemporary and future applications, including

 ✓ Precise 3D modeling of the human body, buildings, the atmosphere, and
so on

 ✓ Gathering and analysis of data from sensor networks

 ✓ Integration with historical data to examine 3D space/objects over time

Polyglot Persistence
The official definition of polyglot is “someone who speaks or writes several
languages.” The term is borrowed in this context and redefined as a set of
applications that use several core database technologies, and this is the most
likely outcome of your big data implementation planning. It is going to be dif-
ficult to choose one persistence style no matter how narrow your approach
to big data might be. A polyglot persistence database is used when it is nec-
essary to solve a complex problem by breaking that problem into segments
and applying different database models. It is then necessary to aggregate the
results into a hybrid data storage and analysis solution. A number of factors
affect this decision:

 ✓ You are already using polyglot persistence in your existing workplace. If
your enterprise or organization is large, you are probably using multiple
RDBMSs, data warehouses, data marts, flat files, content management
servers, and so on. This hybrid environment is common, and you need
to understand it so that you can make the right decisions about integra-
tion, analytics, timeliness of data, data visibility, and so on. You need to
understand all of that because you need to figure out how it is going to
fit into your big data implementation.

 ✓ The most ideal of environments, where you have only one persistence
technology, is probably not suited to big data problem solving. At the
very least, you will need to introduce another style of database and
other supporting technologies for your new implementation.

 ✓ Depending on the variety and velocity of your big data gathering, you
may need to consider different databases to support one implementa-
tion. You should also consider your requirements for transactional
integrity. Do you need to support ACID compliance or will BASE compli-
ance be sufficient?

As an example, suppose that you need to identify all the customers for your
consumer hard goods product who have purchased in the last 12 months and
have commented on social websites about their experience — AND whether

100 Part III: Big Data Management

they have had any support cases (when, how many, how resolved), where
they acquired the product, how it was delivered (and was the delivery rout-
ing cost efficient with respect to energy consumption?), what they paid, how
they paid, whether they have been to the company website, how many times,
what they did on the site, and so on. Then suppose that you want to offer
them a promotional discount to their smartphone when they are entering one
of your (or one of your partners’) retail stores.

This is a big data challenge at its best. Multiple sources of data with very dif-
ferent structures need to be collected and analyzed so that you can get the
answers to these questions. Then you need determine whether the custom-
ers qualify for the promotion and, in real time, push them a coupon offering
them something new and interesting.

This type of problem cannot be solved easily or cost-effectively with one type
of database technology. Even though some of the basic information is trans-
actional and probably in an RDBMS, the other information is nonrelational
and will require at least two types of persistence engines (spatial and graph).
You now have polyglot persistence.

