
Chapter 8

MapReduce Fundamentals
In This Chapter
▶ The origins of MapReduce
▶ Looking at the map function
▶ Exploring the reduce function
▶ Putting map and reduce together
▶ Optimizing MapReduce tasks

W
hile big data has dominated the headlines over the past year, large
computing problems have existed since the beginning of the com-

puter era. Each time a newer, faster, higher-capacity computer system was
introduced, people found problems that were too big for the system to
handle. Along came local-area networks, and the industry turned to combin-
ing the compute and storage capacities of systems on the network toward
solving bigger and bigger problems. The distribution of compute- and data-
intensive applications is at the heart of a solution to big data challenges. To
best achieve reliable distribution at scale, new technology approaches were
needed. MapReduce is one of those new approaches. MapReduce is a soft-
ware framework that enables developers to write programs that can process
massive amounts of unstructured data in parallel across a distributed group
of processors.

Tracing the Origins of MapReduce
In the early 2000s, some engineers at Google looked into the future and
determined that while their current solutions for applications such as
web crawling, query frequency, and so on were adequate for most existing
requirements, they were inadequate for the complexity they anticipated as
the web scaled to more and more users. These engineers determined that if
work could be distributed across inexpensive computers and then connected
on the network in the form of a “cluster,” they could solve the problem.

102 Part III: Big Data Management

Distribution alone was not a sufficient answer. This distribution of work must
be performed in parallel for the following three reasons:

 ✓ The processing must be able to expand and contract automatically.

 ✓ The processing must be able to proceed regardless of failures in the net-
work or the individual systems.

 ✓ Developers leveraging this approach must be able to create services
that are easy to leverage by other developers. Therefore, this approach
must be independent of where the data and computations have executed.

MapReduce was designed as a generic programming model. Some of the initial
implementations provided all the key requirements of parallel execution, fault
tolerance, load balancing, and data manipulation. The engineers in charge of
the project named the initiative MapReduce because it combines two capabili-
ties from existing functional computer languages: map and reduce.

Google engineers designed MapReduce to solve a specific practical problem.
Therefore, it was designed as a programming model combined with the imple-
mentation of that model — in essence, a reference implementation. The refer-
ence implementation was used to demonstrate the practicality and effectiveness
of the concept and to help ensure that this model would be widely adopted by the
computer industry. Over the years, other implementations of MapReduce have
been created and are available as both open source and commercial products.

Functional versus procedural programming models
When we talk of map and reduce, we do so as
operations within a functional programming
model. Functional programming is one of the two
ways that software developers create programs
to address business problems. The other model
is procedural programming. We take a quick look
to understand the differences and to see when
it’s best to use one or the other model.

Procedural programs are highly structured and
provide step-by-step instructions on what to do
with input data. The order of the execution is
important, and the input data is changed as it
progresses through each step of the program.
Examples of procedural languages include
FORTRAN, COBOL, C, and C++. The best uses
for procedural programs are those where it is
okay to change the values of the input data or
where you need to compare computed values
in one of the steps to determine whether you

need to continue processing or exit the pro-
gram and deliver the result.

In contrast, functional programs do not change
the input data. They look at all the data for spe-
cific patterns and then apply rules to identify the
important elements and then assemble them into
lists. The order of the processing is not impor-
tant because each operation is independent
of another. Examples of functional languages
include LISP, Scheme, Prolog, and R. Functional
programs do not change the input data and are
most often used when it is necessary to look at
the data again and again for different patterns.
For example, you could look through a list of
all the counties in the United States that voted
Republican in the last election and then go
through the list for all Democratic counties. This
will produce two distinct output lists.

103 Chapter 8: MapReduce Fundamentals

Understanding the map Function
The map function has been a part of many functional programming languages
for years, first gaining popularity with an artificial intelligence language called
LISP. Good software developers understand the value of reuse, so map has
been reinvigorated as a core technology for processing lists of data elements
(keys and values). To further your understanding of why the map function is
a good choice for big data (and the reduce function is as well), it’s important
to understand a little bit about functional programming.

Operators in functional languages do not modify the structure of the data;
they create new data structures as their output. More importantly, the origi-
nal data itself is unmodified as well. So you can use the map function with
impunity because it will not harm your precious stored data. Another advan-
tage to functional programming is not having to expressly manage the move-
ment or flow of the data. This is helpful because it absolves the programmer
from explicitly managing the data output and placement. Because you are
operating in a distributed environment, dealing with where the data is stored
can be a nightmare. The map function takes care of that. Finally, in the world
of functional programming, the order of the operations on the data is not pre-
scribed. Again, this is a great advantage in a computing cluster where tasks
are being performed in parallel.

So what exactly can you expect from the map function? It applies a function
to each element (defined as a key-value pair) of a list and produces a new
list. Suppose that you wanted to create a program that counts the number of
characters in a series or list of words. The following is not official program-
ming code; it’s just a way to represent how to construct a solution to the
problem.

One way to accomplish the solution is to identify the input data and create a
list:

mylist = (“all counties in the US that participated in the
most recent general election”)

Create the function howManyPeople using the map function. This selects
only the counties with more than 50,000 people:

map howManyPeople (mylist) = [howManyPeople “county 1”;
howManyPeople “county 2”; howManyPeople “county
3”; howManyPeople “county 4”; . . .]

Now produce a new output list of all the counties with populations greater
than 50,000:

(no, county 1; yes, county 2; no, county 3; yes, county 4;
?, county nnn)

104 Part III: Big Data Management

The function executes without making any changes to the original list. In
addition, you can see that each element of the output list maps to a corre-
sponding element of the input list, with a yes or no attached. If the county
has met the requirement of more than 50,000 people, the map function identi-
fies it with a yes. If not, a no is indicated. This is an important feature, as you
shall soon see when you look at the reduce function.

Adding the reduce Function
Like the map function, reduce has been a feature of functional programming
languages for many years. In some languages, it is called fold, but the behav-
ior is exactly the same. The reduce function takes the output of a map func-
tion and “reduces” the list in whatever fashion the programmer desires. The
first step that the reduce function requires is to place a value in something
called an accumulator, which holds an initial value. After storing a starting
value in the accumulator, the reduce function then processes each element
of the list and performs the operation you need across the list. At the end
of the list, the reduce function returns a value based on what operation you
wanted to perform on the output list. Revisit the map function example now
to see what the reduce function is capable of doing.

Suppose that you need to identify the counties where the majority of the
votes were for the Democratic candidate. Remember that your howMany-
People map function looked at each element of the input list and created an
output list of the counties with more than 50,000 people (yes) and the coun-
ties with less than 50,000 people (no).

After invoking the howManyPeople map function, you are left with the fol-
lowing output list:

(no, county 1; yes, county 2; no, county 3; yes, county 4;
?, county nnn)

This is now the input for your reduce function. Here is what it looks like:

countylist = (no, county 1; yes, county 2; no, county 3;
yes, county 4; ?, county nnn)

reduce isDemocrat (countylist)

The reduce function processes each element of the list and returns a list of
all the counties with a population greater than 50,000, where the majority
voted Democratic.

105 Chapter 8: MapReduce Fundamentals

Now imagine that you would like to know in which counties with a popula-
tion greater than 50,000 the majority voted Republican. All you need to do
is invoke the reduce function again, but you will change the operator from
isDemocrat to isRepublican:

reduce isRepublican (countylist)

This returns a list of all the counties where the majority of voters supported
Republican candidates. Because you did not change the elements of county
list, you can continue to perform the reduce functions on the input until
you get the results you require. For example, you could look for independent
majorities or refine the results to specific geographic regions.

Putting map and reduce Together
Sometimes producing an output list is just enough. Likewise, sometimes per-
forming operations on each element of a list is enough. Most often, you want
to look through large amounts of input data, select certain elements from the
data, and then compute something of value from the relevant pieces of data.
You don’t always control the input data, so you need to do this work nonde-
structively — you don’t want to change that input list so you can use it in dif-
ferent ways with new assumptions and new data.

Software developers design applications based on algorithms. An algorithm is
nothing more than a series of steps that need to occur in service to an over-
all goal. It is very much like a cooking recipe. You start with the individual
elements (flour, sugar, eggs, and so on) and follow step-by-step instructions
(combine, knead, and bake) to produce the desired result (a loaf of bread).
Putting the map and reduce functions to work efficiently requires an algo-
rithm too. It might look a little like this:

 1. Start with a large number or data or records.

 2. Iterate over the data.

 3. Use the map function to extract something of interest and create an
output list.

 4. Organize the output list to optimize for further processing.

 5. Use the reduce function to compute a set of results.

 6. Produce the final output.

Programmers can implement all kinds of applications using this approach,
but the examples to this point have been very simple, so the real value of

106 Part III: Big Data Management

MapReduce may not be apparent. What happens when you have extremely
large input data? Can you use the same algorithm on terabytes of data? The
good news is yes.

As illustrated in Figure 8-1, all of the operations seem independent. That’s
because they are. The real power of MapReduce is the capability to divide
and conquer. Take a very large problem and break it into smaller, more
manageable chunks, operate on each chunk independently, and then pull it
all together at the end. Furthermore, the map function is commutative — in
other words, the order that a function is executed doesn’t matter.

Figure 8-1:
Data flow in

MapReduce.

If you remember algebra at all, you may recall that when something is com-
mutative, the result is the same, regardless of the order of the elements. For
example:

5 + 7 = 7 + 5

or

3 * 4 = 4 * 3

So MapReduce can perform its work on different machines in a network and
get the same result as if all the work was done on a single machine. It can
also draw from multiple data sources, internal or external. MapReduce keeps

107 Chapter 8: MapReduce Fundamentals

track of its work by creating a unique key to ensure that all the processing
is related to solving the same problem. This key is also used to pull all the
output together at the end of all the distributed tasks.

When the map and reduce functions are used in this fashion, they work col-
lectively to run as a single job within the cluster. All the dividing and con-
quering is done transparently by the execution framework of the MapReduce
engine, and all the work is distributed to one or many nodes in the network.

You need to understand some characteristics of the execution framework so
that you may get a better understanding of why things work the way they do.
This can help you design better applications and also to optimize the execu-
tion for performance or efficiency. The following are the foundational behav-
iors of MapReduce:

 ✓ Scheduling: MapReduce jobs get broken down into individual tasks for
the map and the reduce portions of the application. Because the map-
ping must be concluded before reducing can take place, those tasks
are prioritized according to the number of nodes in the cluster. If you
have more tasks than nodes, the execution framework will manage the
map tasks until all are complete. Then the reduce tasks will run with
the same behaviors. The entire process is complete only when all the
reduce tasks have run successfully.

 ✓ Synchronization: When multiple processes execute concurrently
in a cluster, you need a way to keep things running smoothly.
Synchronization mechanisms do this automatically. Because the execu-
tion framework knows that the program is mapping and reducing, it
keeps track of what has run and when. When all the mapping is com-
plete, the reducing begins. Intermediate data is copied over the network
as it is produced using a mechanism called “shuffle and sort.” This gath-
ers and prepares all the mapped data for reduction.

 ✓ Code/data colocation: The most effective processing occurs when the
mapping functions (the code) is colocated on the same machine with
the data it needs to process. The process scheduler is very clever and
can place the code and its related data on the same node prior to execu-
tion (or vice versa).

 ✓ Fault/error handling: What happens when a failure occurs? Hopefully,
nothing. Most MapReduce engines have very robust error handling and
fault tolerance. With all the nodes in a MapReduce cluster and all the
parts in each node, something is going to fail at some point. The engine
must recognize that something is wrong and make the necessary correc-
tion. For example, if some of the mapping tasks do not return as com-
plete, the engine could assign the tasks to a different node to finish the
job. The engine is designed so that it recognizes when a job is incom-
plete and will automatically assign the task to a different node.

108 Part III: Big Data Management

Optimizing MapReduce Tasks
Aside from optimizing the actual application code, you can use some opti-
mization techniques to improve the reliability and performance of your
MapReduce jobs. They fall into three categories: hardware/network topology,
synchronization, and file system.

Hardware/network topology
Independent of application, the fastest hardware and networks will likely
yield the fastest run times for your software. A distinct advantage of
MapReduce is the capability to run on inexpensive clusters of commodity
hardware and standard networks. If you don’t pay attention to where your
servers are physically organized, you won’t get the best performance and
high degree of fault tolerance necessary to support big data tasks.

Commodity hardware is often stored in racks in the data center. The prox-
imity of the hardware within the rack offers a performance advantage as
opposed to moving data and/or code from rack to rack. During implemen-
tation, you can configure your MapReduce engine to be aware of and take
advantage of this proximity. Keeping the data and the code together is one
of the best optimizations for MapReduce performance. In essence, the closer
the hardware processing elements are to each other, the less latency you will
have to deal with.

Synchronization
Because it is inefficient to hold all the results of your mapping within the
node, the synchronization mechanisms copy the mapping results to the
reducing nodes immediately after they have completed so that the process-
ing can begin right away. All values from the same key are sent to the same
reducer, again ensuring higher performance and better efficiency. The reduc-
tion outputs are written directly to the file system, so it must be designed
and tuned for best results.

File system
Your MapReduce implementation is supported by a distributed file system.
The major difference between local and distributed file systems is capacity.
To handle the huge amounts of information in a big data world, file

109 Chapter 8: MapReduce Fundamentals

systems need to be spread across multiple machines or nodes in a network.
MapReduce implementations rely on a master-slave style of distribution,
where the master node stores all the metadata, access rights, mapping and
location of files and blocks, and so on. The slaves are nodes where the actual
data is stored. All the requests go to the master and then are handled by the
appropriate slave node. As you contemplate the design of the file system
you need to support a MapReduce implementation, you should consider the
following:

 ✓ Keep it warm: As you might expect, the master node could get over-
worked because everything begins there. Additionally, if the master
node fails, the entire file system is inaccessible until the master is
restored. A very important optimization is to create a “warm standby”
master node that can jump into service if a problem occurs with the
online master.

 ✓ The bigger the better: File size is also an important consideration.
Lots of small files (less than 100MB) should be avoided. Distributed file
systems supporting MapReduce engines work best when they are popu-
lated with a modest number of large files.

 ✓ The long view: Because workloads are managed in batches, highly sus-
tained network bandwidth is more important than quick execution times
of the mappers or reducers. The optimal approach is for the code to
stream lots of data when it is reading and again when it is time to write
to the file system.

 ✓ Keep it secure: But not overly so. Adding layers of security on the dis-
tributed file system will degrade its performance. The file permissions
are there to guard against unintended consequences, not malicious
behavior. The best approach is to ensure that only authorized users
have access to the data center environment and to keep the distributed
file system protected from the outside.

Now that you understand a bit about this powerful capability, we take a deep
dive into the most widely used MapReduce engine and its ecosystem.

110 Part III: Big Data Management

