
Chapter 8

MapReduce Fundamentals
In This Chapter
▶ The origins of MapReduce
▶ Looking at the map function
▶ Exploring the reduce function
▶ Putting map and reduce together
▶ Optimizing MapReduce tasks

W 
hile big data has dominated the headlines over the past year, large 
computing problems have existed since the beginning of the com-

puter era. Each time a newer, faster, higher-capacity computer system was 
introduced, people found problems that were too big for the system to 
handle. Along came local-area networks, and the industry turned to combin-
ing the compute and storage capacities of systems on the network toward 
solving bigger and bigger problems. The distribution of compute- and data-
intensive applications is at the heart of a solution to big data challenges. To 
best achieve reliable distribution at scale, new technology approaches were 
needed. MapReduce is one of those new approaches. MapReduce is a soft-
ware framework that enables developers to write programs that can process 
massive amounts of unstructured data in parallel across a distributed group 
of processors.

Tracing the Origins of MapReduce
In the early 2000s, some engineers at Google looked into the future and 
determined that while their current solutions for applications such as 
web crawling, query frequency, and so on were adequate for most existing 
requirements, they were inadequate for the complexity they anticipated as 
the web scaled to more and more users. These engineers determined that if 
work could be distributed across inexpensive computers and then connected 
on the network in the form of a “cluster,” they could solve the problem. 
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Distribution alone was not a sufficient answer. This distribution of work must 
be performed in parallel for the following three reasons:

 ✓ The processing must be able to expand and contract automatically.

 ✓ The processing must be able to proceed regardless of failures in the net-
work or the individual systems.

 ✓ Developers leveraging this approach must be able to create services 
that are easy to leverage by other developers. Therefore, this approach 
must be independent of where the data and computations have executed.

MapReduce was designed as a generic programming model. Some of the initial 
implementations provided all the key requirements of parallel execution, fault 
tolerance, load balancing, and data manipulation. The engineers in charge of 
the project named the initiative MapReduce because it combines two capabili-
ties from existing functional computer languages: map and reduce.

Google engineers designed MapReduce to solve a specific practical problem. 
Therefore, it was designed as a programming model combined with the imple-
mentation of that model — in essence, a reference implementation. The refer-
ence implementation was used to demonstrate the practicality and effectiveness 
of the concept and to help ensure that this model would be widely adopted by the 
computer industry. Over the years, other implementations of MapReduce have 
been created and are available as both open source and commercial products.

Functional versus procedural programming models
When we talk of map and reduce, we do so as 
operations within a functional programming 
model. Functional programming is one of the two 
ways that software developers create programs 
to address business problems. The other model 
is procedural programming. We take a quick look 
to understand the differences and to see when 
it’s best to use one or the other model.

Procedural programs are highly structured and 
provide step-by-step instructions on what to do 
with input data. The order of the execution is 
important, and the input data is changed as it 
progresses through each step of the program. 
Examples of procedural languages include 
FORTRAN, COBOL, C, and C++. The best uses 
for procedural programs are those where it is 
okay to change the values of the input data or 
where you need to compare computed values 
in one of the steps to determine whether you 

need to continue processing or exit the pro-
gram and deliver the result.

In contrast, functional programs do not change 
the input data. They look at all the data for spe-
cific patterns and then apply rules to identify the 
important elements and then assemble them into 
lists. The order of the processing is not impor-
tant because each operation is independent 
of another. Examples of functional languages 
include LISP, Scheme, Prolog, and R. Functional 
programs do not change the input data and are 
most often used when it is necessary to look at 
the data again and again for different patterns. 
For example, you could look through a list of 
all the counties in the United States that voted 
Republican in the last election and then go 
through the list for all Democratic counties. This 
will produce two distinct output lists.
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Understanding the map Function
The map function has been a part of many functional programming languages 
for years, first gaining popularity with an artificial intelligence language called 
LISP. Good software developers understand the value of reuse, so map has 
been reinvigorated as a core technology for processing lists of data elements 
(keys and values). To further your understanding of why the map function is 
a good choice for big data (and the reduce function is as well), it’s important 
to understand a little bit about functional programming.

Operators in functional languages do not modify the structure of the data; 
they create new data structures as their output. More importantly, the origi-
nal data itself is unmodified as well. So you can use the map function with 
impunity because it will not harm your precious stored data. Another advan-
tage to functional programming is not having to expressly manage the move-
ment or flow of the data. This is helpful because it absolves the programmer 
from explicitly managing the data output and placement. Because you are 
operating in a distributed environment, dealing with where the data is stored 
can be a nightmare. The map function takes care of that. Finally, in the world 
of functional programming, the order of the operations on the data is not pre-
scribed. Again, this is a great advantage in a computing cluster where tasks 
are being performed in parallel.

So what exactly can you expect from the map function? It applies a function 
to each element (defined as a key-value pair) of a list and produces a new 
list. Suppose that you wanted to create a program that counts the number of 
characters in a series or list of words. The following is not official program-
ming code; it’s just a way to represent how to construct a solution to the 
problem.

One way to accomplish the solution is to identify the input data and create a 
list:

mylist = (“all counties in the US that participated in the 
most recent general election”)

Create the function howManyPeople using the map function. This selects 
only the counties with more than 50,000 people:

map howManyPeople (mylist) = [ howManyPeople “county 1”; 
howManyPeople “county 2”; howManyPeople “county 
3”; howManyPeople “county 4”; . . . ]

Now produce a new output list of all the counties with populations greater 
than 50,000:

(no, county 1; yes, county 2; no, county 3; yes, county 4; 
?, county nnn)
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The function executes without making any changes to the original list. In 
addition, you can see that each element of the output list maps to a corre-
sponding element of the input list, with a yes or no attached. If the county 
has met the requirement of more than 50,000 people, the map function identi-
fies it with a yes. If not, a no is indicated. This is an important feature, as you 
shall soon see when you look at the reduce function.

Adding the reduce Function
Like the map function, reduce has been a feature of functional programming 
languages for many years. In some languages, it is called fold, but the behav-
ior is exactly the same. The reduce function takes the output of a map func-
tion and “reduces” the list in whatever fashion the programmer desires. The 
first step that the reduce function requires is to place a value in something 
called an accumulator, which holds an initial value. After storing a starting 
value in the accumulator, the reduce function then processes each element 
of the list and performs the operation you need across the list. At the end 
of the list, the reduce function returns a value based on what operation you 
wanted to perform on the output list. Revisit the map function example now 
to see what the reduce function is capable of doing.

Suppose that you need to identify the counties where the majority of the 
votes were for the Democratic candidate. Remember that your howMany-
People map function looked at each element of the input list and created an 
output list of the counties with more than 50,000 people (yes) and the coun-
ties with less than 50,000 people (no).

After invoking the howManyPeople map function, you are left with the fol-
lowing output list:

(no, county 1; yes, county 2; no, county 3; yes, county 4; 
?, county nnn)

This is now the input for your reduce function. Here is what it looks like:

countylist = (no, county 1; yes, county 2; no, county 3; 
yes, county 4; ?, county nnn)

reduce isDemocrat (countylist)

The reduce function processes each element of the list and returns a list of 
all the counties with a population greater than 50,000, where the majority 
voted Democratic.
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Now imagine that you would like to know in which counties with a popula-
tion greater than 50,000 the majority voted Republican. All you need to do 
is invoke the reduce function again, but you will change the operator from 
isDemocrat to isRepublican:

reduce isRepublican (countylist)

This returns a list of all the counties where the majority of voters supported 
Republican candidates. Because you did not change the elements of county 
list, you can continue to perform the reduce functions on the input until 
you get the results you require. For example, you could look for independent 
majorities or refine the results to specific geographic regions.

Putting map and reduce Together
Sometimes producing an output list is just enough. Likewise, sometimes per-
forming operations on each element of a list is enough. Most often, you want 
to look through large amounts of input data, select certain elements from the 
data, and then compute something of value from the relevant pieces of data. 
You don’t always control the input data, so you need to do this work nonde-
structively — you don’t want to change that input list so you can use it in dif-
ferent ways with new assumptions and new data.

Software developers design applications based on algorithms. An algorithm is 
nothing more than a series of steps that need to occur in service to an over-
all goal. It is very much like a cooking recipe. You start with the individual 
elements (flour, sugar, eggs, and so on) and follow step-by-step instructions 
(combine, knead, and bake) to produce the desired result (a loaf of bread). 
Putting the map and reduce functions to work efficiently requires an algo-
rithm too. It might look a little like this:

 1. Start with a large number or data or records.

 2. Iterate over the data.

 3. Use the map function to extract something of interest and create an 
output list.

 4. Organize the output list to optimize for further processing.

 5. Use the reduce function to compute a set of results.

 6. Produce the final output.

Programmers can implement all kinds of applications using this approach, 
but the examples to this point have been very simple, so the real value of 
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MapReduce may not be apparent. What happens when you have extremely 
large input data? Can you use the same algorithm on terabytes of data? The 
good news is yes.

As illustrated in Figure 8-1, all of the operations seem independent. That’s 
because they are. The real power of MapReduce is the capability to divide 
and conquer. Take a very large problem and break it into smaller, more 
manageable chunks, operate on each chunk independently, and then pull it 
all together at the end. Furthermore, the map function is commutative — in 
other words, the order that a function is executed doesn’t matter. 

 

Figure 8-1: 
Data flow in 

MapReduce.
 

If you remember algebra at all, you may recall that when something is com-
mutative, the result is the same, regardless of the order of the elements. For 
example:

5 + 7 = 7 + 5 

or 

3 * 4 = 4 * 3

So MapReduce can perform its work on different machines in a network and 
get the same result as if all the work was done on a single machine. It can 
also draw from multiple data sources, internal or external. MapReduce keeps 
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track of its work by creating a unique key to ensure that all the processing 
is related to solving the same problem. This key is also used to pull all the 
output together at the end of all the distributed tasks.

When the map and reduce functions are used in this fashion, they work col-
lectively to run as a single job within the cluster. All the dividing and con-
quering is done transparently by the execution framework of the MapReduce 
engine, and all the work is distributed to one or many nodes in the network.

You need to understand some characteristics of the execution framework so 
that you may get a better understanding of why things work the way they do. 
This can help you design better applications and also to optimize the execu-
tion for performance or efficiency. The following are the foundational behav-
iors of MapReduce:

 ✓ Scheduling: MapReduce jobs get broken down into individual tasks for 
the map and the reduce portions of the application. Because the map-
ping must be concluded before reducing can take place, those tasks 
are prioritized according to the number of nodes in the cluster. If you 
have more tasks than nodes, the execution framework will manage the 
map tasks until all are complete. Then the reduce tasks will run with 
the same behaviors. The entire process is complete only when all the 
reduce tasks have run successfully.

 ✓ Synchronization: When multiple processes execute concurrently 
in a cluster, you need a way to keep things running smoothly. 
Synchronization mechanisms do this automatically. Because the execu-
tion framework knows that the program is mapping and reducing, it 
keeps track of what has run and when. When all the mapping is com-
plete, the reducing begins. Intermediate data is copied over the network 
as it is produced using a mechanism called “shuffle and sort.” This gath-
ers and prepares all the mapped data for reduction.

 ✓ Code/data colocation: The most effective processing occurs when the 
mapping functions (the code) is colocated on the same machine with 
the data it needs to process. The process scheduler is very clever and 
can place the code and its related data on the same node prior to execu-
tion (or vice versa).

 ✓ Fault/error handling: What happens when a failure occurs? Hopefully, 
nothing. Most MapReduce engines have very robust error handling and 
fault tolerance. With all the nodes in a MapReduce cluster and all the 
parts in each node, something is going to fail at some point. The engine 
must recognize that something is wrong and make the necessary correc-
tion. For example, if some of the mapping tasks do not return as com-
plete, the engine could assign the tasks to a different node to finish the 
job. The engine is designed so that it recognizes when a job is incom-
plete and will automatically assign the task to a different node.
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Optimizing MapReduce Tasks
Aside from optimizing the actual application code, you can use some opti-
mization techniques to improve the reliability and performance of your 
MapReduce jobs. They fall into three categories: hardware/network topology, 
synchronization, and file system.

Hardware/network topology
Independent of application, the fastest hardware and networks will likely 
yield the fastest run times for your software. A distinct advantage of 
MapReduce is the capability to run on inexpensive clusters of commodity 
hardware and standard networks. If you don’t pay attention to where your 
servers are physically organized, you won’t get the best performance and 
high degree of fault tolerance necessary to support big data tasks.

Commodity hardware is often stored in racks in the data center. The prox-
imity of the hardware within the rack offers a performance advantage as 
opposed to moving data and/or code from rack to rack. During implemen-
tation, you can configure your MapReduce engine to be aware of and take 
advantage of this proximity. Keeping the data and the code together is one 
of the best optimizations for MapReduce performance. In essence, the closer 
the hardware processing elements are to each other, the less latency you will 
have to deal with.

Synchronization
Because it is inefficient to hold all the results of your mapping within the 
node, the synchronization mechanisms copy the mapping results to the 
reducing nodes immediately after they have completed so that the process-
ing can begin right away. All values from the same key are sent to the same 
reducer, again ensuring higher performance and better efficiency. The reduc-
tion outputs are written directly to the file system, so it must be designed 
and tuned for best results.

File system
Your MapReduce implementation is supported by a distributed file system. 
The major difference between local and distributed file systems is capacity. 
To handle the huge amounts of information in a big data world, file  
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systems need to be spread across multiple machines or nodes in a network. 
MapReduce implementations rely on a master-slave style of distribution, 
where the master node stores all the metadata, access rights, mapping and 
location of files and blocks, and so on. The slaves are nodes where the actual 
data is stored. All the requests go to the master and then are handled by the 
appropriate slave node. As you contemplate the design of the file system  
you need to support a MapReduce implementation, you should consider the 
following:

 ✓ Keep it warm: As you might expect, the master node could get over-
worked because everything begins there. Additionally, if the master 
node fails, the entire file system is inaccessible until the master is 
restored. A very important optimization is to create a “warm standby” 
master node that can jump into service if a problem occurs with the 
online master.

 ✓ The bigger the better: File size is also an important consideration. 
Lots of small files (less than 100MB) should be avoided. Distributed file 
systems supporting MapReduce engines work best when they are popu-
lated with a modest number of large files.

 ✓ The long view: Because workloads are managed in batches, highly sus-
tained network bandwidth is more important than quick execution times 
of the mappers or reducers. The optimal approach is for the code to 
stream lots of data when it is reading and again when it is time to write 
to the file system.

 ✓ Keep it secure: But not overly so. Adding layers of security on the dis-
tributed file system will degrade its performance. The file permissions 
are there to guard against unintended consequences, not malicious 
behavior. The best approach is to ensure that only authorized users 
have access to the data center environment and to keep the distributed 
file system protected from the outside.

Now that you understand a bit about this powerful capability, we take a deep 
dive into the most widely used MapReduce engine and its ecosystem.
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